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Constitutive models are important to biomechanics
for two key reasons. First, constitutive modelling
is an essential component of characterizing tissues’
mechanical properties for informing theoretical
and computational models of biomechanical
systems. Second, constitutive models can be used
as a theoretical framework for extracting and
comparing key quantities of interest from material
characterization experiments. Over the past five
decades, the Ogden model has emerged as a popular
constitutive model in soft tissue biomechanics
with relevance to both informing theoretical and
computational models and to comparing material
characterization experiments. The goal of this
short review is threefold. First, we will discuss
the broad relevance of the Ogden model to soft
tissue biomechanics and the general characteristics
of soft tissues that are suitable for approximating
with the Ogden model. Second, we will highlight
exemplary uses of the Ogden model in brain tissue,
blood clot and other tissues. Finally, we offer a
tutorial on fitting the one-term Ogden model to
pure shear experimental data via both an analytical
approximation of homogeneous deformation and a
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finite-element model of the tissue domain. Overall, we anticipate that this short review will
serve as a practical introduction to the use of the Ogden model in biomechanics.

This article is part of the theme issue ‘The Ogden model of rubber mechanics: Fifty years of
impact on nonlinear elasticity’.

1. Introduction
Ogden introduced in 1972 what we today refer to as the ‘Ogden model’ [1]. At the time, Ogden
set out to introduce a material model that was (i) accurate for isotropic, incompressible, ‘rubber-
like’ materials under large deformation, and (ii) was more amicable to mathematical analysis than
strain invariant-based models. He considered rubber-like materials to be ideally (hyper-)elastic;
that is, materials that do not exhibit hysteresis and where the stress is only a function of the strain
and in no way a function of its strain history. The strain-energy function he introduced is most
commonly quoted as

W(λ1, λ2, λ3) =
n∑

i=1

μi
[λαi

1 + λ
αi
2 + λ

αi
3 − 3]

αi
, (1.1)

where λ1, λ2 and λ3 refer to the three principal stretches, and μi and αi are the Ogden material
parameters. Please note, though Ogden also introduced a model for compressible materials [2],
we will subsequently consider the Ogden model formulated for incompressible materials.

Through the use of the principal stretches as the independent variables, Ogden circumvented
the use of the traditional strain invariants I1 and I2, which he felt complicated mathematical
analysis [1]. Depending on the choice of n, the material model may be referred to as the one-
term Ogden model (for n = 1), the two-term Ogden model (for n = 2) and so forth. Note that for
specific choices of its parameters, the Ogden model recovers both the neo-Hookean model as well
as the Mooney–Rivlin model. Consequently, the one-term Ogden model fits experimental data on
natural rubber significantly better than the neo-Hookean model and is mathematically simpler
than other two-parameter models while fitting data on rubber equally well or better. Given
its suitability for rubber-like materials, its simple mathematical form, and its success in fitting
experimental data, the Ogden model gained immense popularity culminating in the present
special issue in honour of the model’s 50th anniversary.

The model’s popularity has not been limited to rubber-like polymers—the Ogden model is
widely used in biomechanics. Specifically, it is frequently used in modelling soft tissues. While
soft tissues violate the assumption of perfect elasticity [3,4], treating them as (pseudo-)elastic
is often suitable as either a good first approximation to their behaviour, or as an application
specific assumption [5,6]. Among soft tissues, those most suited to be approximated using the
Ogden model in its original form are isotropic tissues. That is, tissues whose microstructure is
sufficiently dispersed so that they may be thought of as random at the macroscale. Commonly, soft
tissue such as liver, brain, kidney and blood clot are treated as mechanically isotropic (see more
details in §2). By contrast, tissues with well organized, often collagenous, microstructures are
typically poorly suited for the unmodified Ogden model as they generally behave anisotropically.
Examples for such tissues include skin [7,8], myocardium [9,10], arteries [11,12], skeletal muscle
[13,14] and heart valve leaflets [15,16]. In addition, the Ogden model may be well suited for
modelling collagenous tissues whose in vivo loading is primarily axial and thus can be analysed
in one dimension. Examples of such tissues include tendons [17], ligaments [18] and chordae
tendineae [19].

The objective of this article is threefold. First, our goal is to introduce the Ogden model
to those readers that are unfamiliar with it, especially those in the biomechanics community.
We will focus on the effect and interpretation of its parameters and explain what makes
the Ogden model particularly suitable to modelling certain classes of soft biological tissues.
Second, our goal is to review the use of the Ogden model within biomechanics and discuss
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Figure 1. Pure shear as an idealized (homogeneous) and inhomogeneous problem, i.e. the deformation field is a function of the
spatial coordinates. Note, pure shear specimens are typically designed with a large width (w) to height (h) ratio such that the
deformedwidthmay be considered unchanged, while the thickness may change to preserve volume. (Online version in colour.)

its suitability to specific tissue types. Lastly, our goal is to ease the adoption of the Ogden
model by providing practical instructions to its implementation, use and calibration. In this
work, we will specifically emphasize the one-term Ogden model. The reasons are as follows:
(i) with our objectives being primarily introductory, the one-term model lends itself to simple
notation, implementation, and interpretation; (ii) the use of only two parameters—one associated
with a material’s stiffness, the other with a material’s degree of nonlinearity—lends itself (at
least theoretically) to quantitative comparisons between tissues in the sense of biomechanical
phenotyping [20]. That is, tissues’ biomechanical phenotype can be compared statistically by
comparing their respective parameters. With this context in mind, the one-term Ogden model
reads as

W(λ1, λ2, λ3) = μ[λα
1 + λα

2 + λα
3 − 3]

α
. (1.2)

Note, in the original work, Ogden noted that the conventional shear modulus may be
expressed in terms of μi and αi through the identity 2μ0 = ∑

μiαi leading to an alternative
equation in terms of μ0 rather than μ. Because the conventional shear modulus is easy to interpret,
we too choose this form, written as

W(λ1, λ2, λ3) = 2μ0[λα
1 + λα

2 + λα
3 − 3]

α2 . (1.3)

2. The Ogden model in biomechanics

(a) Model suitability and sensitivity
The Ogden model is best suited to represent isotropic materials; that is, materials whose
properties are not direction dependent. These materials can be sufficiently characterized with
relatively simple test modes such as uniaxial tensile and compression testing, simple shear
testing and pure shear testing; albeit, more than one test mode is usually needed to identify
unique parameters to the Ogden model [21,22]. In fact, in §3, we will introduce data from
a pure shear test on blood clot as an example dataset. Thus, in this current section, we will
briefly revisit the kinematic assumptions underlying the idealized—i.e. homogeneous—pure
shear testing mode and the corresponding expression of stress, see figure 1. Additionally, for
illustrative purposes below, we will use the homogeneous pure shear test to showcase the (one-
term) Ogden model’s sensitivity to its parameters, and highlight the model’s particular suitability
for representing soft isotropic biological tissue. However, note that in reality the pure shear
testing mode leads to an inhomogeneous problem that may require approximation through
computational rather than analytical approaches. We will therefore discuss approaches to material
property characterization based on both the homogeneous and the inhomogeneous assumptions
in §3. Also, for those readers that are unfamiliar with the pure shear deformation, we provide one
(possible) explanation for its peculiar name in the electronic supplementary material.
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Figure 2. (One-term) Ogden model response to pure shear. (a) Sensitivity to the ‘nonlinearity’ parameter α with μ0 = 1.
(b) Sensitivity to the conventional shear modulusμ0 withα = 5. (Online version in colour.)

Briefly, under the assumptions of homogeneity and incompressibility, the deformation
gradient for pure shear generally reads F = diag(1, λ, 1/λ), where F is the deformation gradient
and λ is the stretch in the loading direction, see figure 1. Given the expression for the Cauchy
stress σ i = λi∂W/∂λi − p, we can solve for the Lagrange multiplier p under the assumption of
traction-free lateral boundaries to find

σ = 2μ0[λα − λ−α]
α

. (2.1)

Here, we made use of the incompressibility assumption, which dictates that λ1λ2λ3 = 1 and
we replaced λ2 and σ2 with λ and σ , respectively. Figure 2 illustrates the one-term Ogden model’s
predictions of pure shear and the model’s sensitivity to the parameters α and μ0. In detail,
figure 2a illustrates the influence of what is often referred to as the ‘nonlinearity parameter’ α.
Focusing first on the tensile response, it becomes apparent that for α = 0.5 the Ogden model
predicts strain-softening behaviour. That is, the predicted material stiffness (i.e. slope to the
stress-stretch curve) decreases with increasing strain. In fact, the Ogden model predicts strain-
softening behaviour for any |α| < 1. On the other hand, for |α| > 1, the Ogden model predicts
strain-stiffening behaviour under tensile loading as seen for α = 5, 7, 10. It is this latter property
that makes the Ogden model suitable to soft tissues, many of which exhibit strain stiffening
due to their fibrous, semi-flexible, biopolymeric microstructure [23]. Figure 2b illustrates the
influence of the conventional shear modulus μ0. As one would expect of the shear modulus,
it scales the material response. That is, increasing μ0 leads to an increase in overall stiffness. Note
under compression the Ogden model is always strain stiffening. Consequently, a nonlinearity
parameter |α| < 1 not only leads to strain softening under tension, but also to tension-compression
nonlinearity. It is this latter property that has led others to term α the ‘tension-compression
nonlinearity parameter’.

Note, one drawback of using pure shear as an example loading mode is that its expression for
stress is symmetric in the sign of α. Thus, positive and negative αs yield the same result. This is
not generally true. For example, the stress under uniaxial extension reads

σ = 2μ0 [λα − λ−α/2]
α

. (2.2)
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Thereby, a sign change of α modulates whether the material stiffens at a higher rate under
tension, or compression (more on this limitation in §4).

(b) Prior uses of the Ogden model in biomechanics: from head to toe
Among the many applications of the Ogden model in biomechanics, it has found the most wide-
spread use within the brain biomechanics community [24]. For modelling brain tissue, the Ogden
model is used in its one-term, two-term, three-term or even higher term form [25] and informed
through simple shear experiments [26], compression experiments [27–29], uniaxial tensile testing
[30–32], indentation experiments [33] or a combination thereof [34]. For the one-term Ogden
model, reports on the nonlinearity parameter α and the shear modulus μ0 vary widely. Such
differences may stem from inter-subject and inter-species variability, differences in test modes and
protocols, different storage and mounting procedures etc. [35]. However, even within the same
study α for brain tissue has been reported in the range of −82.9 to 48.2 [20]. Thus, wide variety in
reported α is likely not due to physiological factors, but rather fitting issues and model-inherent
limitations. In fact, it was previously suggested that the Ogden model is relatively insensitive to
α under some loading conditions which partially explains its large variability among studies [36].
Additionally, as Budday et al. pointed out, incomplete choice of loading modes may fail to capture
the full material response of brain tissues—and other tissues—and thus lead to inappropriate
fitting of the α parameter [20]. Others have noted this challenge before and suggested using
multiple test modes to inform α [21,22]. Alternatively, Yeoh proposed to fix a reasonable value
of α during the fitting procedure or to impose reasonable bounds during constrained fitting [36].
By contrast, the shear modulus μ0 is relatively conserved across studies, implying that it has
more value as a measure of a tissue’s biomechanical phenotype [20,30,33]. As a brief summary
of this extensive previous work on modelling brain tissue with the Ogden model, ‘the classical
Ogden model is a well-suited phenomenological model to characterize the time-independent
behaviour of the brain tissue’ as stated by de Rooij et al. [37]. Although, even beyond the quasi-
static approximation of brain tissues, the Ogden model is of value. To capture the time-dependent
behaviour of brain tissue, many applications have previously coupled the Ogden model to either
a poroelastic or a viscoelastic formulation [38,39]. Regardless of the specific choice of the model,
whether by itself, extended through time-dependent terms, or augmented with anisotropic terms
[40], the Ogden model has shown to be a versatile and appropriate model for capturing the
mechanics of brain tissue. Beyond modelling brain tissue, the Ogden model has also been used for
many other soft tissues. For example, it has also been used to model blood clot. Similar to brain
tissue, the Ogden model for blood clot has been informed via simple shear experiments [41], pure
shear experiments [42], compression experiments [43] and under mixed modes [44]. In fact, our
case study in §3 is comprised of pure shear experimental data of in vitro blood clot. In addition to
brain tissue and blood clot, the Ogden model has also been used to model liver tissue (including
its capsule) [45]. Similarly to brain tissue and blood clot, the Ogden model for the liver has been
informed via uniaxial extension [46,47], compression [48] and indentation [49]. Also similarly to
the applications described above, the Ogden model for liver has been applied in its one-term form
[50] and multi-term form [49], and has been modified through inclusion of viscoelastic extensions
[51,52] and via logarithmic and exponential terms [53]. Liver, spleen and kidney have also been
modelled via Ogden’s strain-energy function [54,55]. Finally, the Ogden model has been widely
popular in foot biomechanics, where it has been used extensively to model plantar soft tissue
[56–61]. In summary, the Ogden model has been used to model many of our bodies’ most
important tissues, ranging all the way from head to toe.

3. A case study
As part of our practical guide to the Ogden model, we collected an example experimental dataset
which we then used to demonstrate two differing approaches to calibrating the Ogden material
parameters. While we limit ourselves again to the one-term Ogden model for simplicity, both
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Figure 3. Example blood clot dataset. Force–displacement curve as measured under pure shear and the corresponding digital
image correlation-based visualization of the Euler–Almansi strain. (Online version in colour.)

approaches are generally applicable to multiple terms with only minor changes to the example
code provided with this manuscript. Please also note that we do not discuss the numerical
implementation of the Ogden model within the finite-element framework, as the Ogden model is
widely implemented in both commercial [36] and open source [62] finite-element codes. However,
we refer those readers interested in the implementation of the Ogden model to a wonderful
resource by Connolly et al. [63].

(a) The pure shear dataset
For the purpose of this guide, we collected pure shear data on blood clot. We previously described
the blood coagulation methods and experimental methods in detail [64]. Thus, we only briefly
summarize them here. First, we coagulated fresh bovine blood into a three-dimensional printed
mould of a pure shear geometry that spanned 40 mm by 10 mm by 3 mm in one, two and three
dimensions, respectively. We speckled the sample with sand for full-field digital image correlation
(DIC), and mounted the sample in our uniaxial tensile tester (Instron 5943, 10 N load cell). After
mounting, we extended the upper mount at a rate of 0.5 mm s−1 until the sample failed. During
testing, we recorded the measured force, time and the displacement. Simultaneously, we imaged
the sample at a rate of 3 Hz. After concluding our experiments, we used the open source DIC
software NCORR (www.ncorr.com) to compute the Euler–Almansi strain of our sample [65].
Figure 3 shows the raw data up until a displacement of 5 mm. Please note that the raw data
file provided with our work contains the full dataset up until failure, which we are not displaying
or fitting here. Figure 3 also shows the DIC-derived Euler–Almansi strain map in the one- and
two-directions at a displacement of 5 mm. From these images, it is evident that the deformation
field is not homogeneous, i.e. the strain field is a function of the spatial coordinates x1 and x2.
Nevertheless, note that the plane strain assumption in direction 1 (i.e. the pure shear deformation
mode) is satisfied throughout most of the sample width, which motivates the homogeneous
description in the next section.

(b) Homogeneous pure shear
The advantage of assuming that the pure shear experiment leads to a homogeneous deformation
field lies in the existence of a simple, closed-form solution. See §2 to revisit this solution.
The assumption of homogeneity is based on the notion that a large sample width relative
to sample height leads to negligible stretch in the one-direction. As shown in figure 3, this
is clearly not the case for our example dataset. Nonetheless, the assumption of homogeneity
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Figure 4. Schematic of the pipeline for fitting the Ogden model parameters to an experimental dataset. In §3b, we provide
details on (i) the analytical solution and in §3c we provide details on the forward finite-element (FE) simulation (ii). (Online
version in colour.)

can be a good first approximation. Figure 4(i) shows the pipeline for the inverse parameter
identification for the Ogden material model based on the analytical solution to the homogeneous
pure shear problem. This pipeline is very general and applicable not just to the Ogden model,
but to other material models and mechanical test mode combinations. In fact, this pipeline is
also applicable to the problem of heterogeneous pure shear through replacing the analytical
solution with a finite-element approach, see figure 4(ii). We and others have used this or similar
approaches extensively for the purpose of identifying material parameters for soft tissues [66,67].
In short, we use a least-squares solver to minimize an objective function that penalizes the
difference between our experimental force–displacement—or, equivalently—stress-stretch data
and our analytically predicted data. By iteratively improving each parameter guess, the solver
subsequently minimizes the error until convergence is achieved and the final optimal parameter
set has been identified. We implemented this pipeline in a Jupyter Notebook that is openly
available with our work and can be freely adapted by the reader to their specific data. Based
on this pipeline, we found the optimal Ogden parameters for our dataset to be α = 4.28 and
μ0 = 2.38 kPa. The resulting fit between our experimental data and our analytical predictions is
excellent with a root mean square error (RMSE) of 9.92 mN, see figure 5. The actual parameter
values reflect those reported for blood clot by our own laboratory and by others very well [41].

(c) Inhomogeneous pure shear
From the DIC-based strain visualization in figure 3, we see that our pure shear experiments
did not lead to a perfectly homogeneous deformation field. Therefore, the assumptions
underlying our analytical solutions are, to some extent, inaccurate. In contrast to our analytical
solution, a finite-element-based solution to the boundary value problem can account for such
inhomogeneities and may therefore yield more accurate estimates of the Ogden parameters from
our example pure shear experiment. To introduce how to conduct such analysis and contrast
the results to the approach in §3b, we use the same inverse pipeline schematically illustrated
in figure 4, and replace the analytical solution with the solution of a finite-element forward
simulation. For the simulation itself, we use the nonlinear finite-element solver FEBio (www.
febio.org) [62]. Within FEBio, we define the sample geometry to mimic our experimental sample,
but take advantage of symmetry and only model one-eighth of the geometry, see figure 6a.
We discretize the geometry using 9600 linear hexahedral elements (bricks). To account for near
incompressiblity, we use a (H1P0) hybrid element formulation and choose a bulk modulus of
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Figure5. Ogdenmaterial parameter identification. (a) Curvefitbetween theanalytical solutionof thehomogeneouspure shear
problem and our example dataset. (b) Curve fit between the numerical solution of the inhomogeneous pure shear problem and
our example dataset. RMSE, root mean square error. (Online version in colour.)

1 GPa (approximately five orders of magnitude higher than our shear modulus) [62]. To mimic
our experiments, we attach a rigid body to the top surface of our sample and displace this rigid
body by 2.5 mm (note that given the symmetry condition this is equivalent to the experimental
displacement of 5.0 mm). Subsequently, we repeatedly perform this simulation with consecutively
improved guesses for the two Ogden parameters α and μ0 until reaching the same convergence
criteria as for the homogeneous pure shear problem. Figure 6b,c shows the finite-element solution
for our converged parameter set. We can clearly see that the strain fields in both the one-
direction and the two-direction are inhomogeneous, albeit only slightly so in the one-direction.
Additionally, we see that the results compare well with our experimental results from figure 3.
We implemented this pipeline in a Jupyter Notebook that is openly available with our work
and can be freely adapted by the reader to their specific data. Based on this pipeline, we found
the optimal Ogden parameters for our dataset to be α = 4.18 and μ0 = 2.25 kPa. The resulting fit
between our experimental data and our numerical predictions is also excellent with a RMSE of
8.72 mN, see figure 5. It may be noted here that the numerical solution yields slightly different
parameter values from those obtained through the analytical approach. Additionally, the RMSE
is slightly smaller. Together these results indicate that the analytical solution does indeed give a
very good approximation to the problem, but yields slightly worse fits. This result is well aligned
with our DIC-based findings that the actual deformation field was homogeneous across most of
the sample, see figure 3 for reference.

(d) Notes on the parameter fitting tutorial
In figure 4, we illustrate the basic pipeline for computing Ogden model material parameters from
experimental data. The key components to this pipeline are: (i) the input experimental data, (ii) the
implemented Ogden model and (iii) the least-squares regression solver. As described in §3b and
3c, the Ogden model can take the form of either an analytical solution or a finite-element analysis
simulation. Under ‘Data Accessibility’, we provide a link to our Python Jupyter Notebook [68]
tutorial on implementing this pipeline. The tutorial begins with basic importing and visualization
of the experimental force–displacement data. The second part of the tutorial demonstrates how to
implement the pure shear analytical solution for the one-term Ogden model and solve for optimal
parameters using the scipy function ‘optimize.curvefit’ [69]. Because we bound the parameter
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in the two-direction. (c) Euler–Almansi strain at 5 mm of displacement in the one-direction. (Online version in colour.)

space for α and μ0 (−100 < α < 100 and 0 < μ0 < ∞ kPa), optimization is performed with the Trust
Region Reflective algorithm [70]. Please note that we tested our inverse identification against
multiple initial guesses to ensure that we found non-local minima within our parameter space. We
recommend users do the same when extending our pipeline to other scenarios. The third part of
the tutorial demonstrates how to call the finite element analysis software FEBio [62] from a Python
script and solve for optimal parameters using the same approach as above. For both strategies,
we also provide code to visualize results. This tutorial provides a concise starting point for soft
tissue material characterization with the Ogden model. One final note to the reader: as mentioned
earlier in this text, ensuring uniqueness of material parameters may require using more than one
test mode. For example, Ogden et al. suggested combining uniaxial tensile testing with biaxial
testing [22]. Similarly, Latorre et al. suggested using uniaxial tensile tests with compression tests
[21]. Fortuitously, our pipeline can be easily extended to this end. To do so, our fitting pipeline
can be extended by including the least-square errors to both tests in the objective function.

4. Limitations and concerns
No model is perfect, and the Ogden model is no exception. We have previously mentioned
that the Ogden model appears relatively insensitive to α under some loading conditions. This
concern has been voiced by others [36]. Specifically, in the context of biomechanical applications,
this implies that α is likely not a good parameter by which to compare materials. Instead, for
biomechanical phenotyping purposes, the conventional shear modulus μ0 is often the better
choice. We have also mentioned previously that the Ogden parameter α simultaneously controls
the tension-compression nonlinearity, the degree of which cannot be separately controlled, and
the degree of nonlinearity. This can be a severe limitation, especially when only tension or
compression data are available and the actual tension-compression nonlinearity is unknown.
Fortunately, Moerman et al. have introduced an extension to the Ogden model, through which
the tension-compression nonlinearity can be controlled [71], thus overcoming this limitation of
the Ogden model. Additionally, it has previously been pointed out that the Ogden model is
purely phenomenological. Interestingly, Ehret has addressed this concern and shown that the
Ogden material can be expressed in terms of physical constants characterizing the polymer
chain and network [72]. Thereby, Ehret challenges the notion that the Ogden model is entirely
phenomenological.
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5. Conclusion
In our work, we discussed the broad relevance and success of the Ogden model in soft tissue
biomechanics and the general characteristics of soft tissues that are suitably approximated by
the Ogden model. Additionally, we highlighted the exemplary use of the Ogden model in brain
tissue, blood clot and other tissues. Finally, we offered a tutorial on fitting the (one-term) Ogden
model to pure shear experimental data via both an analytical approximation of homogeneous
deformation and a finite-element model of the tissue domain. Thereby, we believe, we achieved
our goals and provided readers a practical, yet informative introduction to the Ogden model in
biomechanics.
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