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A B S T R A C T

Thromboembolism – that is, clot formation and the subsequent fragmentation of clot – is a leading cause of
death worldwide. Clots’ mechanical properties are critical determinants of both the embolization process and
the pathophysiological consequences thereof. Thus, understanding and quantifying the mechanical properties
of clots is important to our ability to treat and prevent thromboembolic disease. However, assessing these
properties from in vivo clots is experimentally challenging. Therefore, we and others have turned to studying in
vitro clot mimics instead. Unfortunately, there are significant discrepancies in the reported properties of these
clot mimics, which have been hypothesized to arise from differences in experimental techniques and blood
sources. The goal of our current work is therefore to compare the mechanical behavior of clots made from the
two most common sources, human and bovine blood, using the same experimental techniques. To this end, we
tested clots under pure shear with and without initial cracks, under cyclic loading, and under stress relaxation.
Based on these data, we computed and compared stiffness, strength, work-to-rupture, fracture toughness,
relaxation time constants, and prestrain. While clots from both sources behaved qualitatively similarly, they
differed quantitatively in almost every metric. We also correlated each mechanical metric to measures of blood
composition. Thereby, we traced this inter-species variability in clot mechanics back to significant differences
in hematocrit, but not platelet count. Thus, our work suggests that the results of past studies that have used
bovine blood to make in vitro mimics – without adjusting blood composition – should be interpreted carefully.
Future studies about the mechanical properties of blood clots should focus on human blood alone.
1. Introduction

Thromboembolic disease is a leading cause of morbidity and mor-
tality worldwide (Cushman, 2007). That is, when blood clots first form
and then break off, emboli may travel downstream and occlude vital
arteries and veins such as those of the heart, brain, or lungs. Respec-
tively, these occlusions may lead to cardiac ischemia, ischemic stroke,
and pulmonary embolism (Beckman et al., 2010). The specific clinical
manifestation of thromboembolic disease depends on clots’ mechanical
properties (Rausch and Humphrey, 2017). For example, clots’ fracture
toughness determines whether and when they break off, while clots’
stiffness determines how far they can travel and which arteries or veins
they occlude (Fereidoonnezhad et al., 2021b; Rausch et al., 2021a).
Thus, quantifying and understanding blood clots’ mechanical properties
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is important to our ability to treat and prevent thromboembolic disease
and its deadly sequelae.

In pursuit of quantifying and understanding blood clots’ mechanical
properties, we and many others have resorted to studying the properties
of in-vitro clot mimics (Liu et al., 2021; Fereidoonnezhad et al., 2021a;
van Kempen et al., 2016; Liang et al., 2017; Malone et al., 2018;
Johnson et al., 2021; He et al., 2022; Varner et al., 2023; Riha et al.,
1999; Gersh et al., 2009; Chueh et al., 2011; Krasokha et al., 2010;
Huang et al., 2013; Litvinov and Weisel, 2022). However, there is lack
of consensus in the existing literature. For example, reported stiffness
values differ substantially (Varner et al., 2023). These discrepancies
likely stem from at least two different sources: widely varying mechan-
ical testing protocols and variability in sample preparation, including
vailable online 15 March 2024
751-6161/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jmbbm.2024.106508
Received 18 August 2023; Received in revised form 24 February 2024; Accepted 1
3 March 2024

https://www.elsevier.com/locate/jmbbm
https://www.elsevier.com/locate/jmbbm
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
https://dataverse.tdl.org/dataverse/STBML
mailto:manuel.rausch@utexas.edu
http://www.manuelrausch.com
https://doi.org/10.1016/j.jmbbm.2024.106508
https://doi.org/10.1016/j.jmbbm.2024.106508


Journal of the Mechanical Behavior of Biomedical Materials 154 (2024) 106508G.P. Sugerman et al.
Fig. 1. Sample dimensions and mechanical testing protocols. (A) We cast our samples in custom molds lined with Velcro which securely hold the samples. We mounted them
onto our uniaxial tensile tester and deformed them according to one of three protocols: (B) Pure shear and Mode-I samples underwent simple extension to failure. Cyclic loading
samples were displaced to 40% clamp-to-clamp strain before returning to 0N for a total of ten cycles. Stress relaxation samples were loaded to 10, 20, 30, and 40% clamp-to-clamp
strain in subsequent steps with a 120 s hold after each step.
Source: Reproduced from Sugerman et al. (2020) with permission from the Royal Society of Chemistry.
blood source. In a step toward overcoming these challenges, we have
previously developed and shared robust, repeatable, and highly con-
trolled sample preparation and mechanical testing protocols for blood
clot (Sugerman et al., 2020, 2021a,b, 2023; Lohr et al., 2022; Rausch
et al., 2021b).

We developed and tested these sample preparation and mechanical
testing protocols using bovine blood for practical reasons — it is widely
available and inexpensive, and in addition to ovine and porcine blood
it has historically been used to model human blood clots (Chueh et al.,
2011; Malone et al., 2018; Ghezelbash et al., 2022; Varner et al.,
2023). However, blood composition and coagulation chemistry vary
across these species (Siller-Matula et al., 2008; Dibiasi et al., 2018). For
example, hematocrit – or the volume percentage of blood occupied by
red blood cells (RBCs) – varies between humans and cows. The healthy,
non-pregnant reference range for human hematocrit is 37%–52% while
that of the cow is 21%–38% (Dixon, 1997; Roland et al., 2014).
Additionally, cows have smaller RBCs than humans. Human RBCs have
a mean volume of 81–99 fL and a mean diameter of 7.5–8.7 μm (Dixon,
1997; Diez-Silva et al., 2010) while bovine RBCs have a mean volume
of 36–50 fL and a mean diameter of 5–6 μm (Roland et al., 2014; Adili
et al., 2016). Given that hematocrit has been shown to strongly affect
clot mechanical properties, it is to be suspected that the mechanical
properties of clots from bovine blood may fundamentally differ from
those made of human blood (Tynngård et al., 2006; Thurston, 1978;
Fereidoonnezhad et al., 2021a). However, to date, no comprehensive
comparison between the elastic, viscoelastic, and fracture mechanical
properties of clots from unmodified blood of both sources has been
conducted. This knowledge gap should be filled to ensure that future
efforts focus on a blood clot mimic that represents human blood clots
well, which is the goal of this study.

2. Methods

2.1. Blood collection

We obtained bovine blood in CPDA-1 anticoagulant (86:14
blood:anticoagulant) from a commercial vendor (Lampire Biological
Laboratories, Pipersville, PA, USA), while we drew human blood from
healthy donors into ACD anticoagulant (85:15 blood:anticoagulant).
The composition of the anticoagulants is compared in Table 1. Human
research protocols were reviewed and approved by the Institutional
Review Board at The University of Texas at Austin. For both the human
and bovine subjects, we used blood samples from six distinct subjects.
Bovine blood samples were tested within 4 h after a 48-hour shipping
2

Table 1
Contents of anticoagulants: ACD anticoagulant was used for human samples while
CPDA-1 anticoagulant was used for bovine samples.

Contents (g/L) ACD CPDA-1

Trisodium citrate 22 26.3
Citric acid 8 2.98
Dextrose 24.5 31.8
Sodium phosphate – 2.21
Adenine – 0.28

period. Human samples were stored for the same duration, i.e., 48 h,
after the draw and then tested within 4 h to match the storage time
of the bovine samples. During storage, both bovine and human blood
samples were kept at 4 °C. Our human subjects include four male and
two female participants, with a mean age of 25.3 years (range 22–
29 years). Our bovine subjects include three male and three female
donors.

2.2. Sample preparation

We prepared our samples according to previously published proto-
cols (Sugerman et al., 2021a). Briefly, we mixed blood with calcium
chloride (20 mM final concentration) to reverse the effects of the
anticoagulants. We then cast the blood into custom molds according
to the test modality. For prestrain assessment, we filled 30 × 30 mm
square frames (3 mm thick) with blood and covered both sides with
polymer sheets (Gel-Pak tack level 4, Gel-Pak, Hayward, CA, USA) to
prevent evaporation. For all other tests, we added the blood to custom
rectangular molds lined with Velcro to create a secure attachment, see
Fig. 1 for an illustration. We incubated all the samples at 37 °C for
60 min prior to testing. We measured the incubation time from the
addition of calcium chloride until the start of the given test modality.
We conducted three technical replicates per subject per test modality.

2.3. Complete blood count

We obtained complete blood counts (CBC) from all human subjects
and from four of the six bovine subjects. We replaced the missing two
CBC data sets with sets from age- and sex-matched cows from the same
vendor. All measurements were performed by commercial medical or
veterinary labs.
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2.4. Mechanical testing

To measure blood clot prestrain, we cut the squares free from their
30 x 30 mm frames and floated them on phosphate-buffered saline.
We then photographed the samples on a calibrated grid and used
a custom MATLAB program (Mathworks, Natick, MA, USA, Version
2022a) to measure the deformed size and compute the resulting Green–
Lagrange strains in the 𝑥- and 𝑦-directions (The MathWorks Inc, 2022).
Please note that due to sample breakage, only 5 bovine subjects are
represented in the prestrain data along with the 6 human subjects.

To measure blood clot stiffness, strength, work to fracture, and
fracture toughness, we conducted Pure Shear and Mode-I tests. For the
latter, we precut samples along one-third of their width (approximately
13 mm). Then, we mounted the samples onto our uniaxial tensile tester
(Instron, Norwood, MA, USA) using custom fixtures that avoid the need
for clamping or gluing (Sugerman et al., 2021a). Next, we extended
both sample types at a rate of 0.2mm∕s while measuring force with a
10N load cell. During these tests, we captured force, displacement, and
high-resolution images of the samples at a rate of 5Hz synchronized
using a custom LabVIEW program (National Instruments, Austin, TX,
USA, Version 2021 SP1) (National Instruments, 2021).

We used the sequential images of the Mode-I tests to identify the
stretch at which crack propagation began, which we call 𝜆𝑐 . Then, we
calculated fracture toughness as

𝛤𝑐 = 𝑊 (𝜆𝑐 )𝐻 (1)

where 𝐻 is the initial height of the sample and 𝑊 (𝜆𝑐 ) is the strain
energy density of the pure shear sample at the fracture stretch 𝜆𝑐 (Rivlin
and Thomas, 1953).

Cyclic samples were mounted in the uniaxial tensile tester as de-
scribed above but were instead subjected to cyclic loading to 40%
clamp-to-clamp strain with a return to 0N for ten cycles. A depiction of
the loading scheme can be found in Fig. 1B. Similarly, to quantify the
stress relaxation behavior of our samples, we mounted samples as with
the other mechanical test. Then, we loaded them to 10, 20, 30, and
40% clamp-to-clamp strain consecutively with a 120 s hold following
each step. For a depiction of the loading scheme, see Fig. 1B. As we
have reported previously, the relaxation steps are well-represented by
the following two-term exponential decay function (Sugerman et al.,
2020):

�̂� = 1 −
2
∑

𝑖
𝑐𝑖
(

1 − exp
( 𝑡
𝜏𝑖

))

(2)

where �̂� is the normalized stress for the individual strain level, 𝑡 is time,
𝑐𝑖 are scaling parameters, and 𝜏𝑖 are the time constants.

.5. Statistics

To statistically compare bovine and human-derived blood clots, we
sed linear mixed models. Specifically, we used the ‘‘afex’’ library in R
The R Foundation, Vienna, Austria, Version 4.1.0) and conducted pair-
ise comparisons on significant effects using the ‘‘emmeans’’ library (R
ore Team, 2021). For stress relaxation and cyclic tests, we statistically
hecked for the presence of interaction effects between species and
train step or cycle, respectively. We included interaction effects when
Chi-square test indicated that the model with interaction effects fit

he data significantly better than the model without interaction effects.
o conduct correlative studies, we used linear regression models to
it our scalar mechanical metrics to measures of blood composition
sing MATLAB (Mathworks, Natick, MA, USA, Version 2022a). We
irectly compared human and bovine CBCs using independent, two-
ided Student’s t-tests. Comparisons with p-values smaller than 0.05
ere considered significant. All data are reported as mean ± standard

deviation.
3
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3. Results

3.1. Human clots are less resistant to fracture, more compliant, and weaker
than bovine clots

We extended blood clots with and without pre-cuts to failure at a
rate of 0.2 mm/s. In Fig. 2A, we show the Cauchy stress curves for
the Pure Shear (left) and Mode-I (right) modes for human and bovine
clots. Fig. 2B compares scalar metrics derived from these curves. We
first assessed resistance to fracture with the metric fracture tough-
ness, calculated using Eq. (1). Human clots have significantly lower
fracture toughness than bovine clots (3.7 ± 0.88 vs. 10.2 ±2.2 J/m2,
𝑝 < 0.0001). We evaluated compliance using the tangent modulus, or
stiffness, calculated at a stretch of 1.35, and we found that human
clots have a significantly lower tangent modulus than bovine clots
(5.1 ± 1.05 vs. 12 ± 2.3 kPa, 𝑝 < 0.0001). We measured strength using
the peak stress of un-notched samples. Human clots have significantly
lower peak stress than bovine clots (2.7 ± 0.67 vs. 6.3 ± 1.11 kPa,

< 0.0001). Finally, we determined the amount of work required
o rupture un-notched blood clots. We found that human clots have
ignificantly lower work to rupture than bovine clots (0.5 ± 0.16 vs. 1.2
0.24 kJ/m3, p = 0.0001). In summary, human clots require less energy

o propagate cracks, are less stiff, fail at lower stress, and rupture more
asily than bovine clots.

.2. Human clots show less hysteresis and more set than bovine clots under
yclic loading

We deformed blood clots to 40% clamp-to-clamp strain and returned
hem to 0 N at a rate of 0.2 mm/s for ten consecutive cycles. Fig. 3A
rovides an example curve depicting the three scalar metrics we derive
rom each curve. Fig. 3B–D compare these scalar metrics between hu-
an and bovine clots, i.e., peak force, hysteresis, and set. Qualitatively,
e found that these metrics equilibrate after ten cycles in both human
nd bovine clots. Quantitatively, we first compared force at 40% clamp-
o-clamp strain between human and bovine clots across each cycle.
uman clots have significantly lower peak force than bovine clots
veraged across all cycles (130 ± 29 vs. 370 ± 54 mN, 𝑝 < 0.0001).
ext, we computed and compared the area between the loading and
nloading curve to evaluate hysteresis, or the energy dissipated on each
ycle. We showed that human clots have significantly lower hysteresis
han bovine clots averaged across all samples (140 ± 36 vs. 430 ± 76 μJ,
< 0.0001). Finally, we measured and compared the amount of sample
longation after each loading step using the measure ‘‘set’’ across each
ycle in both human and bovine clots. Human clots have a significantly
igher set than bovine clots averaged across all cycles (16.6 ± 1.70 vs.
4.5 ± 1.78%, p = 0.0017). In summary, human clots have lower peak
tress and energy lost to hysteresis than bovine clots but undergo more
longation than bovine clots during cyclic loading.

.3. Human and bovine clots show similar relaxation behavior

We displaced blood clots to 10, 20, 30, and 40% clamp-to-clamp
train at a rate of 0.2 mm/s in four consecutive loading steps with a
-minute hold following each step. Fig. 4A shows the mean ± standard
eviation of force over time for each species. The same force data are
resented in Fig. 4B relative to the applied displacement. We fit each
tress relaxation step independently using Eq. (2). Fig. 4C presents the
irst time constant while Fig. 4D presents the second time constant. The
irst time constant, 𝜏1, does not differ significantly between human and
ovine clots (3.0 ± 0.46 vs. 3.1 ± 0.35, p = 0.2222). The second time
onstant, 𝜏2, is significantly higher in human clots than bovine clots
ut is within the same order of magnitude (61 ± 7.4 vs. 56 ± 4.6, p =
.0061). In short, human clots relax slightly slower than bovine clots

nder stepwise loading.
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Fig. 2. Human clots are less resistant to fracture, more compliant, and weaker than bovine clots. (A) Cauchy stress–stretch curves for the Pure Shear (left) and Mode-I (right)
odes show a substantial difference between species. Curves show mean ± 1 standard deviation. (B) Fracture toughness, tangent modulus at a stretch of 1.35, strength, and work

o rupture of human clots are significantly lower than those made from bovine blood (p ≤ 0.0001). In the violin plots, each point represents the average across three technical
replicates from one subject.
3.4. Human and bovine clots exhibit similar, isotropic prestrain

We cut thin squares of blood clot out of their molds and measured
the extent to which they contracted during coagulation by imaging
them on a calibrated grid. Fig. 5A depicts the experimental proto-
col. Fig. 5B compares the strain in the 𝑥- and 𝑦-directions between
human and bovine clots. We failed to detect a significant difference
between the measurements in the 𝑥- and 𝑦-directions (0.88 ± 0.056
vs. 0.88 ± 0.054, respectively, p = 0.4435). We also failed to detect
a significant difference in prestrain between human and bovine clots
(0.875 ± 0.067 vs. 0.881 ± 0.037, p = 0.9823). Overall, prestrain is
isotropic and similar between human and bovine clots.

3.5. Hematocrit is responsible for much, but not all, of the difference
between species

Based on CBC analyses, we found a human hematocrit of 43 ± 1.9%
and a bovine hematocrit of 33 ± 1.4% (𝑝 < 0.0001), while we found
the human and bovine platelet counts to be 220,000 ± 27,000 per μL
and 310,000 ± 89,000 per μL, respectively (p=0.0538). Next, we fit
linear regression models to our scalar mechanical metrics relative to
the hematocrit and platelet content of each sample. We found no
statistically significant correlations with platelet count. However, we
did find significant correlations with hematocrit. Fig. 6 presents the
eight linear regression models that yielded significant fits (i.e., with 𝑝 <
0.05). The eight metrics with significant fits included all of the metrics
calculated from the Pure Shear and Mode-I curves (fracture toughness,
tangent modulus, strength, and work to rupture), all of the metrics
derived from the cyclic tests (peak force, hysteresis, and set) and one
4

of the two time constants from the stress relaxation analysis (𝜏2). Large
𝑅2 values indicate that inter-species differences in hematocrit explain
much of the difference in blood clot mechanics between human and
bovine clots, but not all, as some 𝑅2s were as low as 0.15.

4. Discussion

The goal of our current work was to isolate the effect of blood source
on the mechanics of blood clots through a robust characterization
of clots’ viscoelastic, fracture, and prestrain behavior. To this end
we compared human and bovine blood. We choose the latter for its
extensive prior use and wide availability. In short, we found that most
mechanical measures differed significantly between both species.

In detail, we found that human blood clots are less resistant to
fracture, more compliant, and weaker than bovine blood clots. We also
found that human blood clots exhibit less hysteresis, and undergo more
set under cyclic loading. In contrast, we found that the stress relaxation
behavior between human and bovine blood clot is quite similar and that
prestrain does not differ.

Thus, our findings do support the notion that some contradictory
findings in the literature may be due to inter-species differences. That
being said, while our findings show significant differences based on
species, scalar metrics are generally on the same order of magnitude.
For example, fracture toughness is approximately 2.8 times lower in our
human clots than in our bovine clots. It is, therefore, likely that inter-
species differences do not explain all discrepancies in reported blood
clot mechanics that can exceed orders of magnitude. Thus, mechanical
testing modality likely remains a consequential contributor.

There are many potential origins for the differences in clot behav-
ior between human and bovine blood. Predominantly, as mentioned
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Fig. 3. Human clots show less hysteresis and more set than bovine clots under cyclic loading. (A) A representative test shows how scalar metrics are calculated: the peak force
was recorded at every cycle, the area between loading and unloading determined work lost to hysteresis, and the effective strain samples reached when returning to 0N is the
‘‘set’’. (B) Peak force equilibrates rapidly in both human and bovine clots. The peak force is significantly different between species at each cycle (𝑝 < 0.0001). (C) Hysteresis also
equilibrates rapidly in both clot types, again to significantly different values, with human samples being lower (𝑝 < 0.0001). (D) The amount of set trends toward equilibrium
within ten cycles. Human samples have a significantly higher set at every cycle (p = 0.0017). In B-D, points are the mean of three technical replicates per subject within the
species, and the shaded region shows ± 1 standard deviation.
previously, the relative abundance of blood components in human and
bovine blood differs. The relationship we see wherein human blood
has higher hematocrit than bovine blood, and the resulting clots are
weaker, more compliant, and less resistant to fracture is consistent with
previous literature (Fereidoonnezhad et al., 2021a). In fact, through
correlative analyses, we found that up to 89% of the variability in scalar
mechanical metrics is attributable to the difference in hematocrit. We
also found that differences in platelet count had no detectable effect on
tested measures of blood clot mechanics.

There are likely other contributing factors to the difference in
clot mechanical behavior, such as differences in fibrin density. Esti-
mates of bovine plasma fibrinogen concentration range from 300–700
mg/dL (Jones and Allison, 2007) which is generally higher than the
reference range for humans (160–400 mg/dL (Asselta et al., 2006)).
In studies of fibrin gel mechanics, increased fibrinogen concentration
has been shown to increase clot strength and resistance to fracture,
and clots made from human fibrinogen were determined to be mechan-
ically weaker than those prepared with bovine fibrinogen (Tutwiler
et al., 2021, 2020; Zeng et al., 2020), which is consistent with the
findings in this work. Additionally, there are notable differences in
the prothrombin time (PT) and activated partial thromboplastin time
(aPTT) reference ranges between humans and cows. Human PT has
been reported as 9.9–13.5 s and aPTT has been reported as 21.7–
29.3 s (Patil et al., 2022). Bovine times are noticeably longer, with PT
reference ranges around 26–38 s and aPTT reference ranges around 30–
58 s (Cornell University College of Veterinary Medicine, 2022). This
difference may also play a role in the discrepancy between human
5

and bovine clot mechanical behavior. In order to further isolate the
mechanisms responsible for our findings, future studies should control
for compositional differences among species such as hematocrit and
fibrin(ogen) concentration.

Before us, others have investigated inter-species differences in blood
clot properties. For example, Dibiasi et al. have compared the viscoelas-
tic behavior of clots made from human, horse, rat, and camel and found
that they differ significantly when measured by rheometry (Dibiasi
et al., 2018). Additionally, Chueh et al. found significant differences in
the stiffness of human, ovine, and bovine clot mimics when measured
via dynamic mechanical analysis (Chueh et al., 2011). Our data adds
to these previous studies through a direct and comprehensive com-
parison between bovine and human clot including elastic, viscoelastic,
prestrain, and fracture mechanical properties.

Our study is subject to important limitations. For example, we
chose to initiate clotting using calcium chloride alone (rather than also
adding thrombin). This may result in clots that are less contracted
and have expelled less plasma during coagulation, which, in turn, may
impact mechanical properties (Chueh et al., 2011). This choice was
made to maintain consistency with our and others’ previously published
work (Sugerman et al., 2021b, 2020; Fereidoonnezhad et al., 2021a;
Liu et al., 2021; Ghezelbash et al., 2022; Dibiasi et al., 2018; Naseri
et al., 2020; Gennisson et al., 2006; Weafer et al., 2019; Johnson
et al., 2021). Additionally, we assessed clot contraction using a two-
dimensional assay. That is, we did not quantify volume change but only
area change. Moreover, we assessed clot contraction after coagulation
under constrained boundaries rather than unconstrained conditions like

others have done before (Cines et al., 2014; Tutwiler et al., 2016,
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Fig. 4. Human and bovine clots show similar relaxation behavior. (A) Force-time and (B) force–displacement curves show substantial stress relaxation behavior at each displacement
step. Curves show mean ± standard deviation. (C) The first relaxation time constant from Eq. (2), 𝜏1, does not demonstrate a significant difference between human and bovine
samples but does show a significant effect of strain level (𝑝 < 0.0001). (D) The second relaxation time constant from Eq. (2), 𝜏2, is significantly higher in samples made from human
blood (p = 0.0061). For both plots, samples are averaged over three technical replicates so each point represents one independent subject.
Fig. 5. Human and bovine clots exhibit similar, isotropic prestrain. (A) We coagulated a sample in a thin square frame for 60 min and then cut the sample free and floated it on
PBS on a calibrated grid. We measured the deformed shape from images of the floating samples. (B) We did not detect a difference in prestrain between clots made from human
and bovine blood (p = 0.9823), nor did we detect a difference across directions (p = 0.4435). Each point represents the average value per independent subject, with 3–4 technical
replicates per subject.
2018). Those two differences may explain why our prestrain values are
relatively low as compared to other reports (Tutwiler et al., 2016).

4.1. Conclusion

In our work, we directly compared the mechanics of clots made from
native, i.e., unaltered, human and bovine blood. We found that – driven
6

by differing blood composition – the mechanical behavior of both types
of clots are qualitatively similar but substantially different quantita-
tively. Importantly, the mechanics of blood clots between both species
differed in almost every measure, including stiffness, strength, work-to-
fracture, amount of energy dissipation, and fracture toughness. Thus,
future work should focus on using human blood to make blood clot



Journal of the Mechanical Behavior of Biomedical Materials 154 (2024) 106508G.P. Sugerman et al.

H
i

m
o

C

o
t
W
l
r
t
o

D

t
M
S
v
s
l

D

h

A

S
F

D

s

Fig. 6. Hematocrit content is a strong contributor to inter-species differences in blood clot mechanics. (A) Hematocrit is responsible for much of the variation in fracture toughness
(𝑅2 = 0.85,𝑝 < 0.001), tangent modulus (𝑅2 = 0.77,𝑝 < 0.001), strength (𝑅2 = 0.78, 𝑝 < 0.001), and work to rupture (𝑅2 = 0.76, 𝑝 < 0.001) across human and bovine clots. (B)

ematocrit is also responsible for much of the variation in peak force (𝑅2 = 0.89, 𝑝 < 0.001) and hysteresis (𝑅2 = 0.87, 𝑝 < 0.001), as well as approximately half of the variation
n set (𝑅2 = 0.48, p = 0.013). The contribution to 𝜏2, one of the stress relaxation time constants, is relatively minor but significant (𝑅2 = 0.15, p = 0.007).
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imics, and past work that used blood from other species (including
ur own) should be carefully interpreted, given these findings.
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