
Finite Elements in Analysis and Design 213 (2023) 103851

A
0

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

A brief note on building augmented reality models for scientific visualization
Mrudang Mathur a, Josef M. Brozovich b, Manuel K. Rausch b,c,d,∗

a University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
b University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX,
United States of America

c University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
d University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, 201 E 24th Street, Austin, 78712, TX, United States of America

A R T I C L E I N F O

Keywords:
Mixed reality
Virtual reality
Digital twin
Metaverse
Finite elements

A B S T R A C T

Augmented reality (AR) has revolutionized the video game industry by providing interactive, three-dimensional
visualization. Interestingly, AR technology has only been sparsely used in scientific visualization. This is, at
least in part, due to the significant technical challenges previously associated with creating and accessing
such models. To ease access to AR for the scientific community, we introduce a novel visualization pipeline
with which they can create and render AR models. We demonstrate our pipeline by means of finite element
results, but note that our pipeline is generally applicable to data that may be represented through meshed
surfaces. Specifically, we use two open-source software packages, ParaView and Blender. The models are then
rendered through the <model-viewer> platform, which we access through Android and iOS smartphones. To
demonstrate our pipeline, we build AR models from static and time-series results of finite element simulations
discretized with continuum, shell, and beam elements. Moreover, we openly provide python scripts to automate
this process. Thus, others may use our framework to create and render AR models for their own research and
teaching activities.
1. Introduction

Scientific data are often inherently three-dimensional. Examples
include imaging results or outputs from numerical methods. However,
despite data’s inherent three-dimensionality, our standard visualization
techniques remain two-dimensional, as is the case with figures or
videos. Additionally, current visualization techniques lack interactivity.
In contrast, Augmented Reality (AR) models can represent the complete
spatial and temporal aspects of data, are interactive in nature, and are
easily accessible through smartphones. That is, AR is a next-generation
visualization technique that overlays computer graphics directly into
the physical space surrounding the user, thereby creating an immersive
experience [1]. While originally championed by the entertainment,
gaming, and computer graphics communities, AR now finds several
applications in manufacturing [2], medicine [3], and education [4].

Despite the clear benefits of AR models, their adoption in research
and education has been limited [5,6]. This is, at least in part, due to the
use of proprietary software and hardware previously needed to create
and render AR experiences, respectively [7]. Additionally, creating AR
models often requires specialized training in computer graphics and

∗ Corresponding author at: University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712,
TX,
United States of America.

E-mail address: manuel.rausch@utexas.edu (M.K. Rausch).

3D modeling that is not germane to most disciplines [8]. Thus, the
objective of our current work is to help the scientific community to
overcome some of these challenges associated with AR visualization. To
do so, we introduce a novel open-source pipeline to build and render
AR models of mesh-based scientific data. For demonstration purposes,
we focus specifically on the visualization of finite element results but
note that our work is equally applicable to many other disciplines and
data types.

2. Material and methods

Towards building and rendering AR models of mesh-based data,
we propose an open-source pipeline using ParaView (Kitware Inc,
Clifton Park, NY), Blender (Blender Foundation BV, Amsterdam, The
Netherlands), and <model-viewer> (Google Inc, Mountain View, CA),
see Fig. 1. While we focus on finite element analyses in this article,
our pipeline can also be used to create AR models of data from
non-numerical experiments such as imaging [9,10]. Briefly, we first
export our simulation results from a finite element solver, for example
vailable online 10 October 2022
168-874X/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.finel.2022.103851
Received 30 July 2022; Received in revised form 11 September 2022; Accepted 14
 September 2022

http://www.elsevier.com/locate/finel
http://www.elsevier.com/locate/finel
mailto:manuel.rausch@utexas.edu
https://doi.org/10.1016/j.finel.2022.103851
https://doi.org/10.1016/j.finel.2022.103851
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2022.103851&domain=pdf


Finite Elements in Analysis & Design 213 (2023) 103851M. Mathur et al.
Fig. 1. Tricuspid valve finite element model rendered through novel AR visualization pipeline: We transfer simulation results from a finite element solver, Abaqus in this
case, to ParaView, an open-source visualization package. In ParaView, we then specify engineering metrics to display and adjust the visualization colormap. Next, we export a
surface geometry of our results to Blender, a popular open-source 3D modeling software. In Blender, we calibrate geometry scaling, translation, rotation, as well as lighting for
AR visualization and animate our time-series results. Finally, we export AR models that are rendered through <model-viewer> on a smartphone.
Abaqus (v6.20-1, Dassault Systèmes, Vélizy-Villacoublay, France), to a
file format compatible with ParaView. In ParaView, we then create
and export a surface-only version of our simulation mesh and data.
Next, we transfer these surface meshes to Blender where we calibrate
model size, location, as well as orientation and create animations in
case of time-series data. From Blender, we then export Android and
iOS-device compatible AR assets that we host on our website using
<model-viewer>. Finally, as a demonstration, we build AR models
containing element types commonly used in computational mechanics:
continuum elements and structural elements such as shells and beams.
A detailed description of the post-processing steps is provided in the
following sections. Additionally, further details on software versions
and file formats used are provided in Appendix A and Appendix B,
respectively.

2.1. Creating a surface mesh

We first assemble our mesh-based results in the *.vtk file format.
Creating *.vtk files is extensively documented in the literature and
we direct readers to an excellent guide detailing this process [11].
Next, we import the *.vtk files in ParaView and calibrate the visual-
ization to better represent engineering metrics such as stress, strain,
and displacement. To this end, we filter our data and apply colormaps
to our simulation mesh. We then generate a surface-only mesh of our
results. Importantly, this approach can accommodate results from 3D
volumetric fields as well. In such cases, we use a surface graphical
object to represent data from the volumetric field at a given plane or
cross-section of the simulation domain. Finally, we export the surface
mesh of our model as a binary *.ply file. Please note, we embed any
engineering metrics as vertex colors in these files. We provide example
*.ply files for continuum, shell, and beam elements on the GitHub
repository supplemental to this article. Additionally, see Appendix C
for a list of filters used to create surface meshes of the aforementioned
elements in ParaView.

2.2. Building AR models

To create AR models from surface meshes of our finite element
results, we follow a multi-step process in Blender, as described in Fig. 2.
Here, we employ a common process to build static AR models for all
mobile platforms. However, because Android and iOS devices use AR-
Core and ARKit as rendering libraries, respectively, they require distinct
treatment when visualizing time-varying data. Thus, our process differs
when animating our time-series data in dynamic AR models for Android
and iOS devices.

2.2.1. Static models
To build a static AR model, we first import the *.ply file in Blender

where we adjust model scaling, translation, and rotation. Please note,
these affine transformations are applied to the deformed meshes of our
2

scientific results to improve visualization in 3D space. To visualize any
colormaps that we add to our model in ParaView, we first create a
‘‘Material’’ within Blender. ‘‘Materials’’ are data structures in Blender
that store and govern the appearance and texture of models. To our
‘‘Material’’, we assign vertex colors that are embedded in the *.ply file.
Next, we apply a ‘‘Decimate Modifier’’ to our geometry. This reduces
the number of polygons in our AR assets which, in turn, reduces their
storage size. Furthermore, we apply a ‘‘Solidify’’ modifier to shell ge-
ometries. This enhances model visibility while rendering. Additionally,
we adjust lighting around our model in 3D space. Finally, we export
an Android-compatible *.glb file through Blender’s native exporter.
To generate an iOS-compatible *.usdz file we use the BlenderUSDZ
add-on via the Blender GUI. To simplify the model creation process,
we have also automated the aforementioned steps using Python. See
Supplementary Scripts 1a-c to create static AR models of simulations
with continuum, shell, and beam elements, respectively.

2.2.2. Dynamic models: Android
First, we follow the same steps used to create static models. That

is, we import all geometries of our time-series data, perform affine
transformations — specifically model scaling, rotation, and translation,
and add the appropriate colormaps to our models in Blender. Next,
we create a stop-motion animation of our time-series results. To this
end, we ensure that only a single geometry is visible in each frame
of our animation. Thereby, we emulate mesh motion between each
animation frame. To achieve this, we dynamically resize each geometry
in our dataset over the timespan of the animation. Finally, we adjust
model lighting and export a *.glb file of our animation for rendering
on Android devices. We provide Supplementary Scripts 2a-c to auto-
matically build dynamic AR models of the continuum, shell, and beam
element examples.

2.2.3. Dynamic models: iOS
To build dynamic models for iOS devices, we first import all *.ply

files into Blender. Next, we adjust the scaling, translation, and ro-
tation of our models. We then animate our time-series data using
Shape Keys. To this end, Blender automatically builds a material point
correspondence between each mesh in our dataset. As a result, we
continuously animate the motion of each vertex in our model geometry
over time. Please note, Shape Keys require the number of polygons
remains constant between meshes. Thus, special attention should be
paid to simulation results with self-contacting geometries to ensure a
constant polygon count. Next, we modify scene lighting and export
an intermediate *.usdc file of our animated model. Finally, we adjust
model scaling and convert our animated model to *.usdz format in Re-
ality Converter or usdzconvert in macOS and Windows/Linux systems,
respectively. See Supplementary Scripts 3a-c to automate Shape Key
animations in Blender.



Finite Elements in Analysis & Design 213 (2023) 103851M. Mathur et al.
Fig. 2. Post-processing operations in Blender: We process surface geometries from ParaView in three distinct ways based on AR model type and rending platform. To this end,
we classify AR models as static models, dynamic AR models for Android devices, and dynamic AR models for iOS devices. We customize model size, position, and lighting in all
cases, adjust animation timing for time series data, and add vertex colors to all models except dynamic models for iOS (see our discussion section for more detail on why we omit
colors in iOS dynamic models).
Fig. 3. AR models of finite element simulations discretized with continuum, shell, and beam elements: (a) We present simulation results in the reference and deformed
configurations which are overlaid with contours of engineering metrics, such as maximum principal Cauchy stress and displacement magnitude. (b) Static and dynamic models of
each simulation can be accessed through the associated QR code.
2.3. Hosting and rendering models

We use GitHub to host, access, and share our AR models. To
this end, we integrate <model-viewer> with our research webpage
to render AR assets. We chose <model-viewer> over other, similar,
rendering platforms as it is free to use, compatible with both Android
and iOS devices, and can be accessed without app download. Finally,
we share links to our AR models through QR codes. This choice is
motivated by the relative ease of generating QR codes and accessing
them via smartphone as well as the possibility of embedding QR codes
in presentations, videos, and figures.
3

3. Results

To demonstrate our open-source visualization pipeline, we built
AR models of three distinct finite element analyses from our research
group, see Fig. 3a. These include a dynamic model of the human
tricuspid valve [12], a bulge inflation test of tissue from a rat’s anterior
tricuspid valve leaflet [13], and the uniaxial extension of an undulated
fiber network. These simulations are discretized with continuum, shell,
and beam elements, respectively. Here, we present images of the ref-
erence and deformed configuration of each simulation, as one would
see in a scientific figure. Additionally in Fig. 3b, we provide QR codes
leading to a webpage containing static and dynamic AR models of



Finite Elements in Analysis & Design 213 (2023) 103851M. Mathur et al.
Fig. 4. Accessing AR models: To view AR models on a smartphone (a) we first scan the QR code and load the associated webpage, (b) we then click the <model-viewer> logo
to enable AR, and finally (c) we position the AR model in 3D space around us.
each simulation. Readers are encouraged to scan these QR codes and
view the linked AR models as described by Fig. 4. Using our open-
source pipeline, we successfully build and render AR models of the
aforementioned finite element analyses. Thereby, we provide scientists,
in general, and mechanicians, in particular, an avenue to create and
share their results in all spatial and temporal dimensions.

4. Discussion

Augmented reality represents the next frontier in personal com-
puting and has the capacity to transform scientific visualization. In
this brief note, we introduced an open-source visualization pipeline
to build and render AR models from finite element simulation results.
Our pipeline integrates an established and versatile tool in scientific
visualization (ParaView) with a popular 3D modeling tool (Blender)
to standardize and simplify the process of building AR models from
scientific data. We then use an open-source AR platform (<model-
viewer>) to access and render our models on Android and iOS devices.
We also demonstrated our pipeline on results from finite element
simulations that are spatially discretized with continuum, shell, and
beam elements. Furthermore, we provide python scripts to automate
the creation of those same models. Thus, we consider this pipeline to
be successful in achieving our stated objectives: to democratize and
simplify AR visualization of three-dimensional data by means of finite
element results. That is, we eschewed the need for proprietary software,
such as NVIDIA Omniverse, and expensive AR headsets, such as the
Microsoft Hololens. Moreover, through the provided python scripts,
we significantly reduce the training required to use an open-source,
industry-standard 3D modeling tool to create AR assets.

In addition to fulfilling these objectives, our pipeline can serve as
a cornerstone for future studies integrating scientific data with mixed-
, virtual-, and augmented-reality applications. Specifically concerning
results from mechanical analyses, we’d like to note that our methods
can be easily extended to Eulerian grids and do not have to be limited
to Lagrangian analyses as used in our examples [14–17]. Furthermore,
we can build AR models from isogeometric analysis results due to
Blender’s in-built support for NURBS [18–20]. Additionally, we may
interface Blender with packages such as Unity to design virtual reality
experiences [21]. Finally, when combined with image processing pack-
ages, our methods can be used to effectively visualize and interact with
digital twins [22,23].

Naturally, our methods are subject to certain limitations. Firstly, our
current method of creating dynamic *.usdz files precludes the use of
custom colormaps. This is currently a limitation of Apple’s underlying
USD codebase. We anticipate that dynamic vertex colors will be added
4

in upcoming software releases. Secondly, our current *.usdz animation
technique requires users to specify the number of times an animation
should repeat. This increases the file size of the AR asset, thereby
making it harder to access over slower internet connections. Moving
forward, we aim to programmatically loop *.usdz animations, similar
to those in *.glb files. Additionally, by using <model-viewer> to render
AR models, we require users to create both *glb and *.usdz models of
any scientific results they have. In the future, we anticipate a greater
cross-compatibility in files between Android and iOS systems, thereby
reducing this burden on content creators. Finally, our pipeline is purely
a visualization tool and not a computational tool. Thus, incorporating
real-time prediction is a task for the future.

5. Conclusion

In conclusion, we introduced an end-to-end pipeline for building
and rendering AR models from scientific, mesh-based data [24]. Impor-
tantly, our pipeline only uses open-source software packages and, thus,
allows users to freely access AR models on any smartphone through the
internet. Furthermore, we showcased our pipeline by building AR mod-
els of finite element analyses with three common element discretiza-
tions that are used in computational mechanics. Moreover, we provide
python scripts to automatically create those models. Through this work,
we hope to simplify and accelerate the adoption of AR visualization in
scientific visualization. Thereby enabling researchers, educators, and
students to gain a deeper understanding of complex spatio-temporal re-
sults associated with their data. Importantly, all scripts and information
necessary to reproduce our work are openly available through a GitHub
repository listed under ‘‘Code Availability’’ below.

Code availability

All supplementary scripts, surface geometries, and AR model ex-
amples are available in the GitHub repository associated with this
article.

URL: https://github.com/SoftTissueBiomechanicsLab/AR_Pipeline.
git

CRediT authorship contribution statement

Mrudang Mathur: Writing – original draft, Developed the code,
Produced all figures and tutorials, Review. Josef M. Brozovich: Devel-
oped the code, Review. Manuel K. Rausch: Writing – original draft,
Review.

https://github.com/SoftTissueBiomechanicsLab/AR_Pipeline.git
https://github.com/SoftTissueBiomechanicsLab/AR_Pipeline.git
https://github.com/SoftTissueBiomechanicsLab/AR_Pipeline.git


Finite Elements in Analysis & Design 213 (2023) 103851M. Mathur et al.

A

v
i
i

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Manuel K. Rausch reports financial support was provided by the
National Heart Lung and Blood Institute. Manuel K. Rausch reports
financial support was provided by the National Science Foundation.
Manuel K. Rausch reports financial support was provided by the Office
of Naval Research. Manuel K. Rausch reports financial support was
provided by the American Heart Association. Mrudang Mathur reports
financial support was provided by the American Heart Association.
Manuel K. Rausch reports a relationship with Edwards Lifesciences
Corporation that includes: speaking and lecture fees.

Data availability

All data and models are openly available through a link to a GitHub
repository.

Acknowledgments

We appreciate support from the American Heart Association
through an award to Dr. Rausch (18CDA34120028) and a predoctoral
fellowship to Mrudang Mathur (902502), as well as the National
Institutes of Health through awards to Dr. Rausch (1R21HL161832
and 1R01HL165251). Additionally, we appreciate support from the
National Science Foundation through awards to Dr. Rausch (2127925,
2105175, 2046148, and 1916663) and the Office of Naval Research
through an award to Dr. Rausch (N00014-22-1-2073). We would also
like to thank Soham M. Mane for sharing the results of his fiber network
simulations with us. Note, the opinions, findings, and conclusions,
or recommendations expressed are those of the authors and do not
necessarily reflect the views of the American Heart Association, the
National Institutes of Health, the Office of Naval Research, or the
National Science Foundation.

Appendix A. Software requirements

Our proposed pipeline requires the use of multiple open-source
software and is, thus, subject to compatibility errors across different
software versions. Therefore, we have compiled a list of stable and com-
patible software packages. These packages, along with their download
links, are detailed in the GitHub repository associated with this article.
The packages are:

• ParaView 5.10
• Blender 2.83
• BlenderUSDZ add-on
• Apple Reality Converter (for MacOS users)
• Apple usdzconvert utility (for Windows/Unix users)

ppendix B. File formats

To ensure the flexibility of our methods to varied numerical solvers,
isualization packages, and mixed-reality platforms we use several
ndustry-standard and open-source file formats in our pipeline. Specif-
cally, we employ *.vtk files for storing and accessing numerical sim-

ulation data and *.ply files to store model geometries. Moreover, we
render our AR assets as *.glb and *.usdz files for Android and iOS
5

devices, respectively.
Appendix C. Generating surface meshes in ParaView

To generate surface meshes for results with continuum and shell
elements we use the following filters:

1. Filters > Alphabetical > Extract Surface
2. Filters > Alphabetical > Generate Surface Normals

For beam elements, we first employ the Tube filter in ParaView viz.:

1. Filters > Alphabetical > Tube
2. Filters > Alphabetical > Extract Surface
3. Filters > Alphabetical > Generate Surface Normals

References

[1] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, M. Ivkovic,
Augmented reality technologies, systems and applications, Multimedia Tools
Appl. 51 (1) (2011) 341–377, http://dx.doi.org/10.1007/s11042-010-0660-6.

[2] A. Nee, S. Ong, G. Chryssolouris, D. Mourtzis, Augmented reality applications
in design and manufacturing, CIRP Ann. 61 (2) (2012) 657–679, http://dx.doi.
org/10.1016/j.cirp.2012.05.010.

[3] M.W. Chu, J. Moore, T. Peters, D. Bainbridge, D. McCarty, G.M. Guiraudon,
C. Wedlake, P. Lang, M. Rajchl, M.E. Currie, R.C. Daly, B. Kiaii, Augmented
reality image guidance improves navigation for beating heart mitral valve repair,
Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 7 (4) (2012) 274–281, http:
//dx.doi.org/10.1097/imi.0b013e31827439ea.

[4] K.N. Plunkett, A simple and practical method for incorporating augmented reality
into the classroom and laboratory, J. Chem. Educ. 96 (11) (2019) 2628–2631,
http://dx.doi.org/10.1021/acs.jchemed.9b00607.

[5] J. Huang, S. Ong, A. Nee, Real-time finite element structural analysis in
augmented reality, Adv. Eng. Softw. 87 (2015) 43–56, http://dx.doi.org/10.
1016/j.advengsoft.2015.04.014.

[6] C. Hedenqvist, M. Romero, R. Vinuesa, Improving the learning of mechanics
through augmented reality, Technol. Knowl. Learn. (0123456789) (2021) http:
//dx.doi.org/10.1007/s10758-021-09542-1.

[7] C. Sutherland, K. Hashtrudi-Zaad, R. Sellens, P. Abolmaesumi, P. Mousavi, An
augmented reality haptic training simulator for spinal needle procedures, IEEE
Trans. Biomed. Eng. 60 (11) (2013) 3009–3018, http://dx.doi.org/10.1109/
TBME.2012.2236091.

[8] J. Huang, S. Ong, A. Nee, Visualization and interaction of finite element analysis
in augmented reality, Comput. Aided Des. 84 (2017) 1–14, http://dx.doi.org/10.
1016/j.cad.2016.10.004.

[9] J. Abderezaei, A. Pionteck, I. Terem, L. Dang, M. Scadeng, P. Morgenstern, R.
Shrivastava, S.J. Holdsworth, Y. Yang, M. Kurt, Development, calibration, and
testing of 3D amplified MRI (aMRI) for the quantification of intrinsic brain
motion, Brain Multiph. 2 (September 2020) (2021) 100022, http://dx.doi.org/
10.1016/j.brain.2021.100022.

[10] K.M. Moerman, C.A. Holt, S.L. Evans, C.K. Simms, Digital image correlation
and finite element modelling as a method to determine mechanical properties
of human soft tissue in vivo, J. Biomech. 42 (8) (2009) 1150–1153, http:
//dx.doi.org/10.1016/j.jbiomech.2009.02.016.

[11] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, fourth ed.,
Kitware, New York, 2006.

[12] M. Mathur, W.D. Meador, M. Malinowski, T. Jazwiec, T.A. Timek, M.K. Rausch,
Texas TriValve 1.0 : a reverse-engineered, open model of the human tricuspid
valve, Eng. Comput. (2022) http://dx.doi.org/10.1007/s00366-022-01659-w.

[13] W.D. Meador, M. Mathur, S. Kakaletsis, C.-Y. Lin, M.R. Bersi, M.K. Rausch,
Biomechanical phenotyping of minuscule soft tissues: An example in the rodent
tricuspid valve, Extrem. Mech. Lett. 55 (2022) 101799, http://dx.doi.org/10.
1016/j.eml.2022.101799.

[14] R. Shad, A.D. Kaiser, S. Kong, R. Fong, N. Quach, C. Bowles, P. Kasinpila,
Y. Shudo, J. Teuteberg, Y.J. Woo, A.L. Marsden, W. Hiesinger, Patient-specific
computational fluid dynamics reveal localized flow patterns predictive of post–
left ventricular assist device aortic incompetence, Circ. Heart Fail. 14 (7) (2021)
E008034, http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.008034.

[15] M.R. Pfaller, J. Pham, N.M. Wilson, D.W. Parker, A.L. Marsden, On the pe-
riodicity of cardiovascular fluid dynamics simulations, Ann. Biomed. Eng. 49
(12) (2021) 3574–3592, http://dx.doi.org/10.1007/s10439-021-02796-x, arXiv:
2102.00107.

http://dx.doi.org/10.1007/s11042-010-0660-6
http://dx.doi.org/10.1016/j.cirp.2012.05.010
http://dx.doi.org/10.1016/j.cirp.2012.05.010
http://dx.doi.org/10.1016/j.cirp.2012.05.010
http://dx.doi.org/10.1097/imi.0b013e31827439ea
http://dx.doi.org/10.1097/imi.0b013e31827439ea
http://dx.doi.org/10.1097/imi.0b013e31827439ea
http://dx.doi.org/10.1021/acs.jchemed.9b00607
http://dx.doi.org/10.1016/j.advengsoft.2015.04.014
http://dx.doi.org/10.1016/j.advengsoft.2015.04.014
http://dx.doi.org/10.1016/j.advengsoft.2015.04.014
http://dx.doi.org/10.1007/s10758-021-09542-1
http://dx.doi.org/10.1007/s10758-021-09542-1
http://dx.doi.org/10.1007/s10758-021-09542-1
http://dx.doi.org/10.1109/TBME.2012.2236091
http://dx.doi.org/10.1109/TBME.2012.2236091
http://dx.doi.org/10.1109/TBME.2012.2236091
http://dx.doi.org/10.1016/j.cad.2016.10.004
http://dx.doi.org/10.1016/j.cad.2016.10.004
http://dx.doi.org/10.1016/j.cad.2016.10.004
http://dx.doi.org/10.1016/j.brain.2021.100022
http://dx.doi.org/10.1016/j.brain.2021.100022
http://dx.doi.org/10.1016/j.brain.2021.100022
http://dx.doi.org/10.1016/j.jbiomech.2009.02.016
http://dx.doi.org/10.1016/j.jbiomech.2009.02.016
http://dx.doi.org/10.1016/j.jbiomech.2009.02.016
http://refhub.elsevier.com/S0168-874X(22)00124-X/sb11
http://refhub.elsevier.com/S0168-874X(22)00124-X/sb11
http://refhub.elsevier.com/S0168-874X(22)00124-X/sb11
http://dx.doi.org/10.1007/s00366-022-01659-w
http://dx.doi.org/10.1016/j.eml.2022.101799
http://dx.doi.org/10.1016/j.eml.2022.101799
http://dx.doi.org/10.1016/j.eml.2022.101799
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.008034
http://dx.doi.org/10.1007/s10439-021-02796-x
http://arxiv.org/abs/2102.00107
http://arxiv.org/abs/2102.00107
http://arxiv.org/abs/2102.00107


Finite Elements in Analysis & Design 213 (2023) 103851M. Mathur et al.
[16] K. Menon, R. Mittal, Flow physics and dynamics of flow-induced pitch oscil-
lations of an airfoil, J. Fluid Mech. 877 (McCroskey 1982) (2019) 582–613,
http://dx.doi.org/10.1017/jfm.2019.627.

[17] T. Berger, M. Kaliske, An arbitrary Lagrangian Eulerian formulation for tire
production simulation, Finite Elem. Anal. Des. 204 (2022) 103742, http://dx.
doi.org/10.1016/j.finel.2022.103742.

[18] B. Dortdivanlioglu, A. Krischok, L. Beirão da Veiga, C. Linder, Mixed isogeometric
analysis of strongly coupled diffusion in porous materials, Internat. J. Numer.
Methods Engrg. 114 (1) (2018) 28–46, http://dx.doi.org/10.1002/nme.5731.

[19] K.M. Shepherd, X.D. Gu, T.J. Hughes, Isogeometric model reconstruction of open
shells via Ricci flow and quadrilateral layout-inducing energies, Eng. Struct. 252
(2022) 113602, http://dx.doi.org/10.1016/j.engstruct.2021.113602.

[20] A. Chemin, T. Elguedj, A. Gravouil, Isogeometric local h-refinement strategy
based on multigrids, Finite Elem. Anal. Des. 100 (2015) 77–90, http://dx.doi.
org/10.1016/j.finel.2015.02.007.
6

[21] N. Bhatia, E.A. Müller, O. Matar, A GPU accelerated lennard-jones system for
immersive molecular dynamics simulations in virtual reality, in: Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 12191 LNCS, 2020, pp. 19–34, http:
//dx.doi.org/10.1007/978-3-030-49698-2_2.

[22] R. Revetria, F. Tonelli, L. Damiani, M. Demartini, F. Bisio, N. Peruzzo, A real-
time mechanical structures monitoring system based on digital twin, iot and
augmented reality, in: 2019 Spring Simulation Conference, Vol. 51, SpringSim,
(1) IEEE, 2019, pp. 1–10, http://dx.doi.org/10.23919/SpringSim.2019.8732917.

[23] E. Febrianto, L. Butler, M. Girolami, F. Cirak, Digital twinning of self-sensing
structures using the statistical finite element method, 2021, pp. 1–23, arXiv:
2103.13729.

[24] C.M. Portela, J.R. Greer, D.M. Kochmann, Impact of node geometry on the
effective stiffness of non-slender three-dimensional truss lattice architectures,
Extrem. Mech. Lett. 22 (2018) 138–148, http://dx.doi.org/10.1016/j.eml.2018.
06.004.

http://dx.doi.org/10.1017/jfm.2019.627
http://dx.doi.org/10.1016/j.finel.2022.103742
http://dx.doi.org/10.1016/j.finel.2022.103742
http://dx.doi.org/10.1016/j.finel.2022.103742
http://dx.doi.org/10.1002/nme.5731
http://dx.doi.org/10.1016/j.engstruct.2021.113602
http://dx.doi.org/10.1016/j.finel.2015.02.007
http://dx.doi.org/10.1016/j.finel.2015.02.007
http://dx.doi.org/10.1016/j.finel.2015.02.007
http://dx.doi.org/10.1007/978-3-030-49698-2_2
http://dx.doi.org/10.1007/978-3-030-49698-2_2
http://dx.doi.org/10.1007/978-3-030-49698-2_2
http://dx.doi.org/10.23919/SpringSim.2019.8732917
http://arxiv.org/abs/2103.13729
http://arxiv.org/abs/2103.13729
http://arxiv.org/abs/2103.13729
http://dx.doi.org/10.1016/j.eml.2018.06.004
http://dx.doi.org/10.1016/j.eml.2018.06.004
http://dx.doi.org/10.1016/j.eml.2018.06.004

	A brief note on building augmented reality models for scientific visualization
	Introduction
	Material and methods
	Creating a surface mesh
	Building AR models
	Static models
	Dynamic models: Android
	Dynamic models: iOS

	Hosting and rendering models

	Results
	Discussion
	Conclusion
	Code Availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Software requirements
	Appendix B. File formats
	Appendix C. Generating surface meshes in ParaView
	References


