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Abstract
Closed-form constitutive models are currently the standard approach for describing soft tissues’ mechanical behavior. How-
ever, there are inherent pitfalls to this approach. For example, explicit functional forms can lead to poor fits, non-uniqueness 
of those fits, and exaggerated sensitivity to parameters. Here we overcome some of these problems by designing deep neural 
networks (DNN) to replace such explicit expert models. One challenge of using DNNs in this context is the enforcement 
of stress-objectivity. We meet this challenge by training our DNN to predict the strain energy and its derivatives from 
(pseudo)-invariants. Thereby, we can also enforce polyconvexity through physics-informed constraints on the strain-energy 
and its derivatives in the loss function. Direct prediction of both energy and derivative functions also enables the computa-
tion of the elasticity tensor needed for a finite element implementation. Then, we showcase the DNN’s ability by learning 
the anisotropic mechanical behavior of porcine and murine skin from biaxial test data. Through this example, we find that a 
multi-fidelity scheme that combines high fidelity experimental data with a low fidelity analytical approximation yields the 
best performance. Finally, we conduct finite element simulations of tissue expansion using our DNN model to illustrate the 
potential of data-driven approaches such as ours in medical device design. Also, we expect that the open data and software 
stemming from this work will broaden the use of data-driven constitutive models in soft tissue mechanics.

Keywords Machine Learning · Nonlinear finite elements · Constitutive modeling · Abaqus User Subroutine UMAT · multi-
fidelity models · Skin mechanics

1 Introduction

Skin is the largest organ in the body and understanding its 
mechanical properties is a crucial step in many biomedical 
applications, from prosthesis design to surgical interven-
tion [1]. The tissue microstructure is characterized by the 
presence of semi-flexible biopolymer fiber networks such 
as collagen and elastin, which endow skin with nonlinear 
and anisotropic behavior [2]. The mechanical properties of 
skin are actually common across many soft connective tis-
sues [3, 4]. Traditionally, the mechanics of skin and other 
soft tissues has been modelled using expert-constructed con-
stitutive equations [5–7]. In this approach, a closed-form 
expression describing the main features of the mechanics 
of a family of materials is constructed first. Then, the free 
parameters in the equations are fitted to a specific material 
in the family to obtain a calibrated model. Inherent restric-
tions of the explicit functional form can result in poor fitting 
and high sensitivity to parameters [8]. Unfortunately, even 
considering just skin out of all connective soft tissue, there 
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is currently no consensus on the choice of model that is most 
suitable in a particular application [9–11].

A new, emergent approach to material modeling is the 
use of data-driven methods [12, 13]. Among them, deep 
neural networks (DNN) have been successfully employed 
to describe the mechanical behavior of several materials 
[14–17]. In this approach, there is no need to limit the model 
to an analytical representation, which results in more accu-
rate predictions than traditional models [18–20]. Physics 
constraints such as objectivity of the stress and convexity of 
the hyperelastic strain energy potential are naturally satisfied 
by most closed-form constitutive models [21]. These con-
straints are embedded into data-driven methods either during 
the design of the algorithm itself [22], or as a penalty [23]. 
Drawbacks of existing approaches stem from scarcity of high 
fidelity test data to train the data-driven models [19]. This 
limitation is particularly prevalent in soft tissue mechanics. 
Additionally, there is a lack of data-driven material model 
software that can function in standard finite element solvers, 
which severely limits the applicability of these emerging 
methods to biomedical applications.

The route followed in our current work lies between 
the purely data-driven approach and the expert modeling 
approach. Closed-form material models already include 
knowledge of physics relevant to soft tissue, observations of 
the underlying microstructure, and intuition from the mod-
eller regarding the main features of the material response. 
For example, to model skin, we have assumed hyperelastic-
ity and used expert-designed strain energy functions to fit 
murine and porcine skin data [24]. However, the error in the 
fits can be undesirable, the parameters non-unique, and the 
predictions can be highly sensitive to the parameters [25]. 
Here we design DNN constitutive models and train them on 
multi-fidelity data: analytical strain energy functions serve 
as low fidelity approximations, high fidelity experimental 
measurements complement the data set. This approach is 
based on the recent literature that shows the advantage of 
multi-fidelity schemes over single fidelity approaches [16, 
17, 26].

The proposed DNNs output the strain energy and its deriva-
tives with respect to the isochoric strain invariants, including 
anisotropy, satisfying stress-objectivity a priori. The loss func-
tion is designed to impose polyconvexity of strain energy. The 
multi-output design in which both the energy and derivatives 
are predicted independently by the DNN, but coupled through 
additional loss terms, provides more flexibility during training 
and enables the computation of the the stress and elasticity 
tensors. As a result, we are able to implement a DNN user 
material (UMAT) subroutine for the widely used nonlinear 
finite element package Abaqus [27], and showcase its poten-
tial to impact skin therapeutics through simulations of tissue 
expansion. The work shown here will extend the reach of 
machine learning tools to improve the modeling of soft tissue 

mechanics, in particular through improved constitutive models 
ready to be used in commercial finite element codes (Fig. 1).

2  Methods

2.1  Constitutive equations for a hyperelastic 
material with two families of fibers

In this study we use a Helmholtz free energy, Ψ , that is a 
function of the right Cauchy-Green deformation tensor, � , 
and two material direction vectors in the reference configura-
tion, �0 and �0 . This form of the Helmholtz free energy func-
tion allows for greater flexibility in recreating the mechani-
cal behavior of materials where more than one family of 
fibers is present or even when the orientation of fibers is ran-
dom, which is usually the case in biological tissues. For soft 
tissues, which we assume to be nearly incompressible, the 
additive split into isochoric and volumetric parts is used [5],

where J =
√
det� is the volume change, and the isochoric 

strain invariants, Î1 , Î2 , Î4v and Î4w are defined as

The isochoric right Cauchy Green deformation, �̂ , can be 
defined in terms of the isochoric part of the deformation 
gradient,

The second Piola-Kirchhoff stress tensor, � , follows from the 
Doyle-Erickson formula by differentiating the strain energy 
Ψ with respect to � and following the procedure outlined by 
Coleman and Noll [28, 29], arriving at

The following definition of the pressure has been introduced 
p = dΨvol∕dJ . Additionally, the fictitious second Piola-
Kirchhoff stress tensor, �̂ , is the result from differentiating 
the isochoric part of the strain energy with respect to the 
isochoric invariants, i.e. Ψ̂1 = 𝜕Ψiso∕𝜕Î1 , Ψ̂2 = 𝜕Ψiso∕𝜕Î2 , 

(1)Ψ = Ψiso(Î1, Î2, Î4v, Î4w) + Ψvol(J) ,

(2)

Î1 = �̂ ∶ � = tr(�̂),

Î2 =
1

2
[Î2
1
− tr(�̂2)],

Î4v = �̂ ∶ �0 ⊗ �0 = �̂ ∶ �0,

Î4w = �̂ ∶ �0 ⊗ �0 = �̂ ∶ �0 .

(3)�̂ = J−1∕3�,

(4)�̂ = �̂⊤�̂ = J−2∕3� .

(5)� =2
�Ψ

��
= �iso + �vol ,

(6)�iso =�̂ ∶
𝜕�̂

𝜕�
= J−2∕3�̂ ∶ ℙ1, �vol = 2p

𝜕J

𝜕�
= Jp�−1 .
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Ψ̂4v = 𝜕Ψiso∕𝜕Î4v and Ψ̂4w = 𝜕Ψiso∕𝜕Î4w . The full expansion 
of the fictitious stress tensor is

The term fictitious originates from the fact that derivatives 
with respect to the full right Cauchy Green deformation ten-
sor needs the projection with the fourth order tensor

which relates derivatives with respect to the isochoric part 
of the deformation to derivatives with respect to the total 
deformation. Note that if the material under consideration is 
incompressible, i.e. J = 1 , then �̂ = � , (5) reduces to

and the pressure p becomes an unknown Lagrange multiplier 
field. In certain cases, p can be solved from boundary condi-
tions. In this study, the nearly incompressible formulation 
is used in the finite element formulation, while the incom-
pressible formulation is used during neural network training 

(7)

�̂ = 2
𝜕Ψiso

𝜕�̂
= 2[Ψ̂1� + Ψ̂2(Î1� − �̂) + Ψ̂4v�0 + Ψ̂4w�0] .

ℙ1 = 𝕀 −
1

3
�−1 ⊗ � ,

(8)� = 2[Ψ̂1� + Ψ̂2(Î1� − �) + Ψ̂4v�0 + Ψ̂4w�0] + p�−1 ,

since this constraint can be easily enforce for the plane stress 
biaxial deformations considered.

The UMAT subroutine requires the computation of the 
Cauchy stress tensor, � . Thus, for completeness, we state the 
standard push forward operation for the stress

The finite element subroutine also requires the computation 
of the elasticity tensor, �abaqus [30]. For ease of derivation, 
the material version of the elasticity tensor, ℂ , is introduced 
first,

The expressions for the volumetric and isochoric parts of 
the elasticity tensor, ℂvol and ℂiso , can be further expanded,

(9)𝜎 =
1

J
���⊤ .

(10)ℂ = 2
��

��
= ℂiso + ℂvol ,

(11)ℂiso = 2
��iso

��
, ℂvol = 2

��vol

��
.

(12)ℂvol = Jp̃�−1 ⊗ �−1 − 2Jp�−1 ⊙ �−1 ,

Fig. 1  Diagram depicting the 
training and inference processes 
of the deep neural network 
material model. FEM Finite 
Element Method
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where the modified pressure term, p̃ = p + Jdp∕dJ , has 
been introduced, as well as the special product noted by 
( ⊙ ) defined as (∙⊙ ◦)ijkl = [(∙)ik(◦)jl + (∙)il(◦)jk]∕2 , and an 
additional fourth order projection tensor ℙ2,

Finally, the fictitious elasticity tensor, ℂ̂ is obtained from 
differentiating the fictitious stress tensor with respect to the 
isochoric part of the deformation tensor,

The full expansion of ℂ̂ is available in the Supplement. The 
only remark needed in the main text is that the tensor ℂ̂ 
requires the second derivatives of the strain energy function 
with respect to the isochoric invariants: Ψ̂11 = 𝜕2Ψ̂∕𝜕2 Î1 , 
Ψ̂12 = 𝜕2Ψ̂∕𝜕Î2𝜕Î1 , Ψ̂14v = 𝜕2Ψ̂∕𝜕Î4v𝜕Î1 , etc. This point will 
become important in the design in the neural network later 
on.

As stated above, the elasticity tensor needed in the UMAT 
subroutine is associated with the deformed configuration. The 
push-forward operation for the elasticity tensor yields

where we have introduced the modified dyadic product 
defined as (∙⊗◦)ijkl = (∙)ik(◦)jl . The tensor � is related to the 
Truesdell stress rate; however, Abaqus increments employ 
the Jaumann stress rate. Therefore, the consistent tangent for 
Abaqus is not Eq. (14) but rather

with the modified dyadic product (∙⊗◦)ijkl = (∙)il(◦)jk.
As remarked before, incompressibility is imposed exactly 

during the training of the neural network, with p determined 
from boundary conditions. However, in the UMAT we use a 
volumetric strain energy which leads to the following expres-
sion for p,

with K the bulk modulus. In this study we set K = 1 MPa.

(13)

ℂiso = −
2

3
�iso ⊗ �−1 + J−4∕3ℙ1 ∶ ℂ̂ ∶ ℙ

T
1
−

2

3
�−1 ⊗ �iso

+
2

3
J−2∕3tr(�̂)ℙ2 ,

ℙ2 = �−1 ⊙ �−1 −
1

3
�−1 ⊗ �−1 .

ℂ̂ = 2
𝜕�̂

𝜕�̂
.

(14)𝕔 =
1

J
(�⊗�) ∶ ℂ ∶ (�⊗�)T

(15)�abaqus = � +
1

2
(𝜎⊗� + 𝜎⊗� + �⊗𝜎 + �⊗𝜎) .

(16)p = K(J − 1) ,

2.2  Neural network structure and training

We use a fully connected DNN to learn the mechanical behav-
ior of skin. The neural network takes four inputs, the isochoric 
strain invariants in (2), and produces five outputs, the strain 
energy, Ψp

iso
 , and its derivatives with respect to the invariants, 

Ψ̂
p

1
 , Ψ̂p

2
 , Ψ̂p

4v
 and Ψ̂p

4w
 . Note that the notation (∙)p is used to 

denote the predicted values of the DNN. The network archi-
tecture is summarized in Table 1.

Training data for the DNN is in the form of stretch and 
stress data, as well as the values of strain energy obtained by 
the integration of the stretch-stress curves. Therefore, the first 
component of the loss function is simply the comparison of 
the predicted strain energy, Ψp

iso
 , against the observed Ψd

iso
 , 

where (∙)d is used to refer to data. The first component of the 
loss function is

where (∙)(n) denotes the nth training point, out of a total of N 
training points. The second term in eq. (17) is a regulariza-
tion term that is added to the loss function to enforce that the 
predicted derivatives are consistent with the strain energy. 
In other words, the derivatives that are a direct output of 
the neural network, Ψ̂p

i
 , should coincide with the derivatives 

of Ψp

iso
 calculated using back-propagation, denoted as Ψ̂bp

i
 

in eq. (17), with i = 1, 2, 4v, 4w , and where (∙)bp stands for 
“back-propagation”.

The second component of the loss results from comparing 
the stress computed with the neural network outputs against 
the observed stress �d . The stress, defined in Eqs. (8) and (9), is 
computed based on the direct strain energy derivatives output 
by the neural network, Ψp

i
 , to produce �p . The loss for the stress 

data can then be simply stated as

where (|| ∙ ||)F denotes the Frobenius norm.

(17)

L1 =
1

N

N∑
n=1

[((
Ψ

p

iso

)(n)
−
(
Ψd

iso

)(n))2

+
∑

i=1,2,4v,4w

((
Ψ̂

bp

i

)(n)

−
(
Ψ̂

p

i

)(n)
)2

]
,

(18)L2 =
1

N

N∑
n=1

|||
|||(�

p)
(n) −

(
�d
)(n)|||

|||F

Table 1  Neural network architecture

Layer Number of nodes Activation function

Input 4 None
Hidden layer 1 4 Sigmoid
Hidden layer 2 8 Sigmoid
Hidden layer 3 8 Sigmoid
Output 5 Linear/quadratic
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To guarantee existence of a solution to the boundary value 
problem, a suitable constraint on the strain energy is that of 
polyconvexity with respect to the deformation gradient, � [21, 
31, 32]. An alternative approach is to enforce convexity of the 
strain energy with respect to � [33]. Convexity with respect to 
� can lead to the existence of global minima in boundary value 
problems under certain conditions [34]. This convexity condi-
tion has been employed in constitutive modeling of biological 
tissues [35] and in numerous studies on data-driven models 
of hyperelastic materials [19, 33]. For instance, the popular 
constitutive model by Holzapfel, Gasser and Ogden to capture 
the mechanical behavior of collagenous tissues was developed 
to fulfill this condition [5]. However, convexity with respect 
to � , and polyconvexity with respect to � are not equivalent. 
Polyconvexity of the strain energy function with respect to � , 
together with some growth conditions on the strain energy, 
guarantees the existence of global minimizers to the total 
potential energy functional [31].

In the current study we enforce convexity of the strain 
energy function with respect to the deformation invari-
ants of � with a global minimum at or below the point 
I1 = 3, I2 = 3, I4v = 1 and I4w = 1 . The invariants are already 
convex functions of � or cof� [21, 36]. Thus, the non-decreas-
ing convex function of the invariants, for I1 ≥ 3, I2 ≥ 3, I4v ≥ 1 
and I4w ≥ 1 , together with a suitable volumetric energy convex 
in J results in polyconvexity of the strain energy with respect 
to �.

For a function to be convex with respect to its arguments, 
it’s Hessian matrix, � , must be positive semi-definite [37]. 
The Hessian matrix of the strain energy as a function of the 
invariants is

The notation Ψbp

ij
 indicates the second derivative of the strain 

energy computed with the neural network by differentiating 
the outputs Ψ̂p

i
 with respect to the jth input using back-prop-

agation. We impose positive-definiteness of the Hessian 
matrix using the principal minor test [38]. For a matrix to be 
positive definite, it has to be symmetric and all its leading 
principal minors, Δk , must be positive. This condition is 
imposed in terms of an additional loss term,

(19)� =

⎛
⎜⎜⎜⎜⎝

Ψ
bp

11
Ψ

bp

12
Ψ

bp

14v
Ψ

bp

14w

Ψ
bp

21
Ψ22bp Ψ

bp

24v
Ψ

bp

24w

Ψ
bp

4v1
Ψ

bp

4v2
Ψ

bp

4v4v
Ψ

bp

4v4w

Ψ
bp

4w1
Ψ

bp

4w2
Ψ

bp

4w4v
Ψ

bp

4w4w

⎞
⎟⎟⎟⎟⎠
.

(20)

L3 =
1

N

N∑
n=1

|||
|||(�)(n) −

(
�⊤

)(n)|||
|||F

+
1

N

N∑
n=1

4∑
k=1

max
(
(−Δ

(n)

k
, 0)

)
.

Note that non-negative derivatives are obtained by passing 
the outputs Ψ̂p

i
 through the quadratic function yi = x2

i
 as indi-

cated in Table 1. The choice of Linear or Quadratic activa-
tion functions in the last layer is selected in the examples 
below depending on whether convexity is imposed or not. 
The non-negative outputs do not directly enforce convex-
ity. Rather, given that the invariants considered are convex 
functions of � or cof� , convex non-decreasing functions 
of these invariants are needed for polyconvexity. The quad-
ratic activation functions for the Ψ̂p

i
 outputs in the last layer 

enforce the non-decreasing condition for the strain energy 
by restricting the derivatives to be non-negative.

The total loss is a weighted sum of the terms discussed 
so far,

If training data from sources with different fidelities are 
used, the total loss of the multi-fidelity (mf) dataset is given 
as a weighted sum of the losses of the high fidelity (hf) and 
low fidelity (lf) datasets,

The training of the DNN was performed using the Adam 
optimization algorithm [39]. The initial learning rate was set 
to 4.0e−5 . The exponential decay rates for first and second 
moment estimates, �1 and �2 , were set to 0.9 and 0.99 respec-
tively. The DNN was trained in 100000 epochs without the 
use of batching. The training was implemented using Keras 
[40] with a Tensorflow [41] back-end on a workstation with 
the following specifications: Intel Xeon E5-1630 3.70 GHz 
CPU, 16 GB DDR4/2400 MHz random access memory, and 
Nvidia GeForce GTX 1080 GPU. The values of the three 
weights a1, a2 and a3 are set to 0.1, 1.0 and 0.008, respec-
tively, after performing a hyperparameter study as reported 
in the Supplement.

2.2.1  Synthetic data generation

In the majority of biomedical applications it is difficult to 
obtain sufficient high fidelity data to train a neural network. 
The number of measurements might be limited, or the data 
points may be constrained to a narrow region of the input 
space. It is then beneficial to make use of low fidelity data 
if available.

In this study, high fidelity data are in the form of biaxial 
stress-stretch measurements. However, only two or three 
curves within the four-dimensional input space defined by 
the invariants is explored. Therefore, we generate synthetic 
data using the Gasser-Ogden-Holzapfel (GOH) [6] material 
model. The GOH model proposes an isochoric strain energy 
of the form

(21)L = a1L1 + a2L2 + a3L3 .

(22)Lmf = Llf + ahfLhf .
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where �0 = (sin �, cos �, 0) is vector denoting the mean fiber 
direction and parameterized by the angle � . The functional 
forms for the GOH strain energy are

with the generalized fiber strain

The volumetric term that is the same as the one we used to 
penalize volume changes in our formulation [5, 6, 42],

The derivation of the stress tensor for the GOH strain energy 
is not repeated here, the interested reader is referred to [6, 
25].

Synthetic data with the GOH model is generated by fitting 
the free parameters to the experimental data using the BFGS 
optimization algorithm in SciPy [43].

2.2.2  Finite element method implementation

We implemented a general neural network material model 
in a user material subroutine (UMAT) in the nonlinear finite 
element package Abaqus. The subroutine was written with 
minimal assumptions to allow for maximal flexibility. The 
neural network structure, weights and biases, activation 
functions, etc. are all imported into the subroutine through 
the input file.

The subroutine performs the following tasks: 

1. Read in the architecture, weights and biases, activation 
function types, etc., as a set of material properties.

2. Pre-process the deformation gradient to obtain the iso-
choric invariants in Eqs. (2 - 4).

3. Perform the forward propagation of the neural network 
to obtain the predicted strain energy Ψp and its first 
derivatives Ψp

i
.

4. Calculate stress using Eqs. (5 - 7, 9).
5. Calculate the second derivatives Ψbp

ij
 with back-propa-

gation.
6. Compute the consistent tangent �abaqus using Eq. (15).

For the forward propagation, let �i−1 ∈ IRm be the output 
of layer i − 1 of the neural network with m nodes. Then the 
output of layer i is given as

(23)Ψ̂(�, �0) = Ψ̂iso(�) + Ψ̂aniso(�, �0)

(24)Ψ̂iso(�) = 𝜇(Î1 − 3) ,

(25)Ψ̂aniso(�, �0) =
k1

4k2

[
exp

(
k2E

2
)
− 1

]
,

(26)E =
[
𝜅 Î1 + (1 − 3𝜅)Î4v − 1

]
.

(27)Ψvol =
K

2
(J − 1)2 .

where gi ∶ IR → IR is the element-wise activation function, 
�i ∈ IRn×m is the weights matrix, and �i ∈ IRn is the biases 
vector of the ith layer of the network. We use the sigmoid 
activation function in the hidden layers,

For the derivatives, let �i−1 ∈ m × m0 be the matrix contain-
ing derivatives of the nodes of layer i − 1 with respect to the 
inputs of the neural network. Then

where m0 is the number of inputs to the neural network and 
diag(∙) denotes a diagonal matrix.

2.3  Biaxial stress‑stretch experiments on porcine 
and murine skin

We use experimental data from biaxial stress-stretch experi-
ments performed on murine [24] and porcine skin for the 
training and validation of neural networks. The data are col-
lected in up to 5 different experimental protocols which are 
defined in Table 2.

2.4  Training data

High fidelity training data used in this study consists of 13 
sets of experimental data obtained from 2 pigs and 11 mice. 
The first porcine dataset consists of 122 data points in the 
off-x and off-y loading protocols, the second porcine dataset 
consists of 402 data points which encompasses all 5 load-
ing protocols in Table 2. The murine dataset consists of 549 
points in the off-x, off-y and equibiaxial protocols.

Low fidelity data was generated using the GOH material 
model. For each of the 3 high fidelity datasets, first the free 
parameters of the GOH model were fitted to the data. Then 
the model was used to generate 225 synthetic data points for 
each of the porcine datasets and 165 points for the murine 
dataset.

During training of the neural networks, the contribution 
of the high fidelity data are weighted higher than the low 

(28)�i = gi(�
T
i
�i−1 + �i), �i ∈ IRn

(29)g(y) =
1

1 + e−y
, g�(y) ≡

dg(y)

dy
= g(y)(1 − g(y)) .

(30)�i = diag(g�(�i))�
T
i
�i−1, �i ∈ IRn×m0

Table 2  Experimental loading 
protocols

Loading �x �y �z

Off-x
√
� � 0

Off-y �
√
� 0

Equibiaxial � � 0
Strip-x � 1 0
Strip-y 1 � 0
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fidelity data. This guides the neural network to adhere to 
the experimental data more closely while approximating the 
low fidelity data in regions with no high fidelity data. In this 
study the ratio between the weights was set to 50 : 1.

3  Results

3.1  Performance of the neural network 
against synthetic data

To test the DNN material model, we first train the network 
using synthetic data only. We generate eleven curves in the 
�x, �y space by first holding �x = 1 while �y is increased 
gradually to �(i)

y
 , with i = 1,… , 11 . The values for the y− 

stretch are �(i)
y
∈ [1, 1.025, 1.05,… , 1.25] . After reaching 

the corresponding �(i)
y

 value, �y is held constant while �x 
is gradually increased (Fig. 2a). These loading curves are 

representative of the the type of test that can be performed 
experimentally. On the other hand, the DNN takes as 
inputs the isochoric strain invariants. The invariant space 
is 4-dimensional, but we plot a 3-dimensional projection 
in Fig. 2b. We use the GOH material model to generate 
synthetic stress data points and train the neural network. 
Various components of the loss are plotted in Fig. 2c. The 
predictions of the trained network are plotted against the 
training data in Fig. 2d–f. These results indicate that the 
DNN is able to recreate almost perfectly the expert con-
stitutive models within the training region.

We also test if the DNN performs well outside the 
training region. We generate three validation datasets. 
The first validation dataset is built by randomly sampling 
�x ∈ [1, 1.25] , �y ∈ [1, 1.25] to construct a diagonal defor-
mation gradient of biaxial deformations not seen during 
training. Then, to test predictions under shear, which are 
not directly part of the training data, we construct a data 
set of deformation gradients of the form

Fig. 2  Synthetic data gener-
ated to train the neural network 
and performance of the neural 
network compared to the train-
ing data. a Training data was 
generated by creating curves 
in the �x, �y space. b Corre-
sponding training data in the 
invariant space, which is the 
actual input space for the neural 
network. The invariant space 
is four-dimensional but only a 
three-dimensional projection 
is shown. The colors of the 
curves indicate the value of the 
fourth invariant. c Loss during 
training. d Predicted and ground 
truth strain energy values. Pre-
dicted and ground truth planar 
stress values in the (e) x- and 
(f) y-directions. The colors of 
the curves in (d), (e) and (f) 
indicate the value of �x
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The validation dataset is generated from randomly sam-
pling �x ∈ [1, 1.25] , �y ∈ [1, 1.25] , �xy ∈ [0, 0.3] . Lastly, 
we are interested in the potential of the neural network to 
extrapolate under biaxial deformations. An additional vali-
dation set is constructed by sampling outside the training 
region: �x ∈ [1, 1.25] but �y ∈ [1.25, 1.35] ; �y ∈ [1, 1.25] but 
�x ∈ [1.25, 1.35] ; and �x ∈ [1.25, 1.35] and �y ∈ [1.25, 1.35] . 
The errors for the validation datasets are shown in Fig. 3.

The stress �̂�p and �̂�d are normalized such that each entry 
of these tensors is obtained by subtracting the mean and 
dividing by the standard deviation of the stress values over 
the validation dataset, e.g. �̂�p

ij
= (𝜎

p

ij
− 𝜎

d,avg

ij
)∕Σd

ij
 , with �d,avg

ij
 

the mean of that stress component over the validation data, 
and Σd

ij
 the corresponding standard deviation. If the data 

were normal, then the normalized quantities would be almost 
entirely in the range [−3, 3] . Even though the data are not 
normal, this is a useful scaling of the stress. Relative errors 
are high in the low strain region for which the stress is neg-
ligible (orders of magnitude lower than in the high stress 
regions), and absolute errors are higher in regions of high 
stress even if the relative error is small. The normalized 
stress better captures the performance of the DNN over the 
input space. It can be seen that the DNN performs well 
within the training region but worse toward the boundary of 
the training region.

3.2  Performance against experimental data: 
multi‑fidelity data and convexity constraints

Next, we start training the DNN using experimental data. We 
want to test the effect of using the experimental data alone 
(sparse high fidelity data), or combining these data with the 
low fidelity approximation of the GOH model fit (multi-
fidelity data). Concurrently, we want to test if the poly-
convexity constraint is required to regularize the fits of the 
DNN. In Figs. 4 and 5, we show the results for murine skin 
data and porcine skin data respectively together with error 
in the predictions which is defined as the average Frobenius 
norm of the error in stress, mean(‖�p − �‖F).

The first row of Fig. 4 corresponds to a neural network 
that is trained using sparse high-fidelity data where the 
convexity constraints are not imposed. Figure 4a shows the 
DNN ability to fit the off-x and off-y data, achieving average 
errors of 4.56 kPa and 5.25 kPa, respectively. A biaxial test, 
not used in training, is used to test the predictive capability 
of the network (Fig. 4b). The average error in the valida-
tion is 7.33 kPa. Because no convexity constraint is used 
we can see that it is not satisfied (Fig. 4c). Keeping only 

(31)� =

⎛
⎜⎜⎜⎝

�x �xy 0

�xy �y 0

0 0
1

�x�y−�
2
xy

⎞
⎟⎟⎟⎠
.

the high-fidelity data but imposing convexity changes the 
performance. The training and validation loss are poorer 
(Fig. 4e–g), but the function is convex over the input space 
(Fig. 4h).

The third and fourth rows of Fig. 4 show the results of 
DNNs trained with multi-fidelity data. It is notable that even 
though the network of the third row is trained without any 
convexity constraints, the fact that it is trained on the GOH 
synthetic data (which is an inherently convex model) helps 
it achieve better convexity (Fig. 4l). The average error in the 

Fig. 3  Validation of the neural network trained on synthetic data. Per-
formance of the neural network on points randomly sampled from: 
a �x ∈ [1, 1.25] and �y ∈ [1, 1.25], b �x ∈ [1, 1.25] , �y ∈ [1, 1.25] , 
�xy ∈ [0, 0.3] and c �x ∈ [1, 1.25] but �y ∈ [1.25, 1.35] ; �y ∈ [1, 1.25] 
but �x ∈ [1.25, 1.35] ; and �x ∈ [1.25, 1.35] but �y ∈ [1.25, 1.35] . The 
colorbar indicates the error of each point as defined at the bottom of 
the figure
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validation set for the multi-fidelity case without convexity 
constraint is 11.75 kPa (Fig. 4k), which is worse than the 
sparse high fidelity case without convexity requirements 
(Fig. 4c). The results for the neural network trained with 
multi-fidelity data and with the convexity constraint are 
shown in last row of Fig. 4. The training errors are 8.21 kPa 
and 7.27 kPa (Fig. 4(m) and (n)), and the validation error is 
11.47 kPa (Fig. 4o). Since the convexity is imposed, the loss 
in the convexity is close to zero over the entire input space 
(Fig. 4p). In summary, polyconvexity is a useful framework 
to guarantee existence of minimizers for problems in elastic-
ity, but it can slightly increase the error of the neural network 
over the training set. This can be reflective of the uncertain-
ties in the experimental data collection, or limitations of the 

hyperelastic framework. Additional 10 murine datasets are 
shown in the Supplemental Material, showing that the DNN 
can easily fit a wide variety of skin samples.

In Fig. 5 we further study the effects of augmenting 
the training data and how the neural network differs from 
relying solely on the expert model. For this we focus on 
porcine skin. We train two DNNs, one of them is trained 
with the experimental data only (first and third columns of 
Fig. 5), whereas the other is trained on the augmented data 
(second and fourth columns of Fig. 5). In Fig. 5c it can be 
seen that trained only on experimental data, the neural net-
work achieves a low average error of 5.13 kPa, compared 
to the GOH fit which is 22.54 kPa. Thus, the neural net-
work outperforms the GOH model. This is not surprising 

Fig. 4  Performance of the DNN 
on the murine skin data and 
average prediction error, E. 
The plots in each row show the 
predicted stress vs actual stress 
on the training (Off-x and Off-
y) and validation (Equibiaxial), 
while the last column shows 
the convexity loss throughout 
the input space. Each row cor-
responds to a separate DNN. 
Predictions of DNN trained 
with (top to bottom): single-
fidelity data and no convexity 
constraints, single-fidelity data 
and convexity constraints, 
multi-fidelity data and no con-
vexity constraints, multi-fidelity 
data and convexity constraints
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since the only task of the neural network is to interpolate the 
experimental data and satisfy convexity. The contour plots in 
Fig. 5g–l shows the difference between the neural network 
as compared with GOH material model throughout the input 
space. It can be seen that the two models differ toward the 
boundary of the deformation space considered. Surprisingly, 
the models agree with each other in large portions of the 
input space even when the DNN is trained independently of 
the GOH model (Fig. 5g–k). Based on the validation exam-
ples with the synthetic dataset, we know that the DNN does 
not extrapolate well outside of the training region. On the 
other hand, the GOH model has been developed and trained 
against thousands of tissue biaxial data. It is reasonable to 
expect that the GOH model, even though it cannot fit any 
particular dataset as well as the DNN, it can be trusted to 
guide the neural network away from the training region. We 
show that training the neural network on the augmented data, 
the loss is on average 12.81 kPa against the experimental 

data (Fig. 5c and e), which is higher than the single-fidelity 
DNN but still lower with respect to using the GOH model 
alone. However, as looking at the contours in Fig. 5h, j and l 
we see that the neural network now follows the GOH model 
even more closely on the entire input space.

Therefore, the DNN trained with augmented data are at 
the very least the best version of the GOH model. It per-
forms better than the GOH material model around the high 
fidelity data points while approximating the GOH model 
elsewhere.

The last test of the DNN material model is also done 
with porcine experimental data. In this case we have 
five different biaxial experiments (see Table 2). We are 
interested in determining which biaxial tests are the most 
informative for the DNN material model. Thus, we train 
the DNN with different combination of experimental data 
and validate against the rest of the data (Fig. 6). We do 
the same training and testing with the GOH model. In 

Fig. 5  Performance of DNNs 
trained on single-fidelity (first 
and third columns) and multi-
fidelity (second and fourth 
columns) training data. The 
scatter plots compare predicted 
strain energy and stress values 
to experimental data as well 
as GOH model outputs. The 
contour plots show the differ-
ence between the corresponding 
outputs of the GOH model and 
the DNN
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Fig. 6(a) and (b) we train the material models with only 
two datasets, and test against the other three. In the train-
ing set, as expected from our previous result, the neural 
network outperforms the GOH model. In the validation 
data we see that the neural network performs similarly to 
the GOH model in the case in which is trained on Off-x 
and Off-y data, but is outperformed by the GOH model in 
the case in which it is trained with Strip-x and Strip-y data. 
Figure 6c, d show the result of training the models with 
three of the five biaxial curves, and validating against the 
remaining two. Again, the DNN obviously outperforms the 

GOH model in the training set. During validation, when 
the DNN is trained on strip biaxial data as well as equi-
biaxial data it is able to outperform the GOH model in both 
validation cases (Fig. 6d). In Fig. 6e we train against four 
tests, and validate against the equibiaxial test. The valida-
tion and training errors are lower for the neural network 
compared to the GOH model. The superior performance of 
the DNN on the last case confirms that data-driven models 
are a preferable alternative to expert constructed constitu-
tive models when sufficient training data are available.

Fig. 6  Comparison of pre-
dicted stress vs actual stress vs 
GOH fits for various training/
validation splits of porcine 
experimental data. Predictions 
of a neural network trained on a 
Off-x and Off-y data, b Strip-x 
and Strip-y data, c Off-x, Off-y 
and Equibiaxial data, d Equibi-
axial, Strip-x and Strip-y data 
and e Off-x, Off-y, Strip-x and 
Strip-y data
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3.3  Finite element method implementation

We show a number of basic finite element simulations to 
test the capabilities of the DNN material model as a UMAT 
subroutine for Abaqus. The neural network trained on por-
cine skin data (with convexity constraint) is defined in the 
input file. We first consider a rectangular block 5 × 5 × 1 
 cm3. Boundary conditions, mesh and results for a uniaxial 
extension simulation with �x = 1.2 are depicted in Fig. 7a. 
The result is a homogeneous stress distribution of �x = 29.9 
kPa, �y = �z = 0 , consistent with the results in Fig. 6, con-
firming that the UMAT subroutine is working as intended.

A shearing simulation is shown in Fig. 7b. In this analysis 
the -x surface of the prism is clamped and a displacement 
boundary condition of Ux = Uy = 5 is applied on the right 
surface. The contours of the resulting stress components, �x 
and �y are shown in Fig. 7. The Supplement shows a simula-
tion with the GOH fit. As discussed in the previous section, 
the neural network model with the augmented data are, in a 
way, the best extension of the GOH model: it retains some 
of the expert model features but does not suffer from the 
constraints of an explicit functional form.

The last simulation in Fig. 7 is a torsional loading sce-
nario. In this simulation the -x surface of the rectangular 
prism is clamped and a rotation boundary condition of 
URx = 1 rad is imposed on the +x surface. The resulting 
stresses are presented in Fig. 7c. This loading scenario is 

different from the previous two because it involves signifi-
cant deformations in the out-of-plane direction. The UMAT 
subroutine executes without any problems. The three simula-
tions in Fig. 7 showcase the robustness and versatility of our 
DNN UMAT. It should also be noted that the DNN mate-
rial model usually requires approximately twice as much 
computational time compared to the built-in GOH model. 
For example, for the torsion problem, the execution time for 
GOH is 00:01:42, while for the DNN UMAT it is 00:02:24.

Next, we perform a simulation that is much more closely 
related to skin biomechanics. Tissue expansion is a widely 
used technique in reconstructive surgery in which a balloon-
like device is inserted and inflated subcutaneously to stretch 
and grow skin [42]. The domain is a 10 × 10 × 0.3  cm3 patch 
of skin modeled with 3200 brick elements. A rectangular 
expander of dimensions 8 × 8  cm2 underneath the skin mesh 
is modeled with the fluid cavity feature in Abaqus. The 
expander is inflated to 20, 40 and 60  cm3 resulting in the 
principal strain distributions shown in Fig. 8. Once again, 
the simulation converged without issues and the results 
align with our previous experimental observations of higher 
deformation at the apex and less toward the periphery of the 
expander [44]. The simulation in Fig. 8 showcases the abil-
ity of our neural network model to be used in realistic finite 
element simulations through our UMAT.

Note that the simulation in Fig. 8 evidences the anisot-
ropy of the model. The fiber directions � and � are aligned 

Fig. 7  Finite element method 
simulations using the DNN 
material model in UMAT. 
Boundary conditions, deformed 
geometry and contours of �x 
under uniaxial loading (a), 
Boundary conditions, deformed 
geometry and contours of �x and 
�y under shear loading (b), and, 
Boundary conditions, deformed 
geometry and contours of �x and 
�y under torsional loading (c)
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with the Cartesian basis [1, 0, 0 and [0, 1, 0]. The tissue 
is stiffer in the � direction, which is why there is a band 
of higher stress along that direction in Fig. 8. To further 
showcase the anisotropy in the deformation we also plot the 
corresponding strains (Fig. 9).

4  Discussion

In this study we propose a deep neural network (DNN) mate-
rial model to replace conventional constitutive equations for 
nonlinear materials, in particular soft collagenous tissues. 
The neural network takes isochoric strain invariants as inputs 
and produces the isochoric strain energy and its derivatives 
as outputs. With this design, objectivity is satisfied a pri-
ori. Other efforts in data-driven modeling of materials and 

structures rely on training directly on the stress data, which 
requires additional steps to ensure objectivity [45–47]. For 
instance, additional loss functions to deal with the viola-
tion of objectivity have been proposed [48]. Efforts using 
invariants or principal stretches as inputs with energy as the 
output have also been shown by others [19, 49, 50], and 
by us as well but for isotropic materials [18]. Intermedi-
ate approaches that map deformation invariants to principal 
stresses have also been sought, but they are limited to iso-
tropic materials and even in that case require regularization 
schemes [51]. The key ideas introduced in this paper are the 
consideration of anisotropy, training with multi-fidelity data 
-including experimental data-, polyconvexity constraints, 
and design of the DNN architecture to compute not only 
the stress but the consistent tangent needed in finite element 
simulations.

Training data for the neural network can consist of both 
expensive (or hard to get) high fidelity data such as results 
of laboratory experiments, or a combination of high fidelity 
data supplemented by synthetic data from expert models. 
A control case shown here is to train the neural network on 
synthetic data alone. The performance of the neural network 
with the synthetic data shows that the network can interpo-
late the expert model almost perfectly (Fig. 2). This is not 
surprising since neural networks are universal approximators 
[52]. Other work using neural network material models have 
also shown excellent performance against synthetic data 
[53]. When enough data are available, recent efforts in data-
driven computational mechanics have shown that model-free 
approaches can be used [47, 54]. However, for applications 
in biomechanics, the anisotropy and high nonlinearity in the 
materials necessitates large amounts of data from deforma-
tions that can cover the entire input space [55, 56]. This 
is often out of reach soft tissue characterization. Thus, we 
propose a DNN model that captures the experimental data, 
but does so constrained by a hyperelastic framework and the 
condition of polyconvexity of the strain energy.

High fidelity data of soft tissue mechanics is sparse in 
most applications. In our previous work, typically only 
three protocols have been performed: off-biaxial x, off-
biaxial y and equi-biaxial [24]. Two other tests, strip-
biaxial tests in the x- and y-direction are explored here 
as well. Liu et al. [19] generated datasets by subjecting 

Fig. 8  Finite element method simulations of tissue expansion using 
the DNN material model in UMAT. From top to bottom: Undeformed 
geometry, and, contours of maximum principal stress on deformed 
geometry after the expander is expanded to 20, 40 and 60  cm3, 
respectively

Fig. 9  Finite element method 
simulations of tissue expan-
sion using the DNN material 
model in the UMAT. From 
left to right: model setup, and, 
contours of strain on deformed 
geometry after the expander is 
expanded to 20, 40 and 60  cm3, 
respectively
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tissues to seven biaxial tests. Clearly, more coverage of 
the input space is always better for data-driven approaches. 
However, this is a challenge, it requires establishment of 
multiple repeatable protocols and extensive testing of a 
individual specimens which can introduce unforeseen 
uncertainties. Within the hyperelastic framework, expert 
models of soft tissue mechanics have been developed over 
the past few decades and reflect our growing understand-
ing of soft tissues. For example, expert models are often 
based on microstructure observations [9, 57], satisfy phys-
ics constraints [21, 35], and have been carefully designed 
based on observations of many data [7]. On the other hand, 
expert models have many limitations, such as non-unique-
ness of fit, high sensitivity to parameters, and inability 
to fit the data due to the inherent constraints of the func-
tional form [8]. By combining the high fidelity data with 
an expert model as a low fidelity approximation we aim at 
getting the best of both, keep data-centric models that can 
capture the experimental data with great accuracy, while 
maintaining relatively good performance in regions with 
scarce high fidelity data. Of course, this raises the ques-
tion of how to balance between the two. Here we set a 
much higher priority for the experimental data, but future 
studies should quantify the uncertainty of both the data 
and the models in regions with little experimental data 
in order to rigorously weight the high and low fidelity 
models. With the current weights, we showcase the abil-
ity of the DNN material model to capture the mechanical 
response of skin based on data obtained from 2 pigs and 
11 mice, demonstrating the applicability of our approach 
to realistic datasets.

Imposing polyconvexity through the loss function ensures a 
stable material model suitable for finite element applications, 
but comes at the expense of fitting error (see Fig. 4). This 
result points to polyconvexity as a potentially restrictive con-
dition on the data, possibly due to the existence of dissipative 
phenomena such as viscoelasticity or damage which were not 
accounted for in the model [2, 58]. Noise can also affect the 
performance of the machine learning approaches [59]. The 
Supplement shows that imposing the convexity constraint, the 
DNN model can capture the synthetic data even in the pres-
ence of noise. Other data-driven approaches have considered 
different convexity constraints. For example, Vlassis et al. [33] 
check for convexity of the strain energy with respect to the 
right Cauchy Green deformation tensor � . While convexity 
with respect to � is widely used [34], it is not equivalent to 
polyconvexity with respect to � [60]. Polyconvexity of the 
strain energy, together with some growth conditions on the 
energy, ensures the existence of minimizers for boundary value 
problems in elasticity [31]. While it is true that polyconvexity 
is a sufficient but not a necessary condition, it provides enough 
flexibility, is compatible with phenomena such as buckling 
[61], and is desirable for finite element implementation. 

Data-driven work enforcing polyconvexity have also been 
explored with different approaches by us and others [53, 62].

A strong motivation behind the development of data-
driven constitutive models of soft tissues based on experi-
mental tissue testing data is to use the model in predictive 
finite element simulations to guide device design or treat-
ment planning [63]. Previous work on data driven modeling 
has fallen short in this regard [19, 53, 64]. The DNN design 
shown here, including the use of invariants as inputs and pre-
diction of energy and energy derivatives as outputs, allows 
us to compute not only the stresses but the consistent tan-
gent. Together with the polyconvexity loss, our data-driven 
framework is uniquely suited for finite element simulations. 
While it would be possible to predict the energy alone, this 
introduces noise in the derivatives that need to be regular-
ized as shown in [33]. An alternative framework is to use 
integrable neural networks [22]. Another method we have 
explored recently is the use of neural ordinary differential 
equations to learn the energy derivatives, ignoring the under-
lying energy function entirely [62]. In [62], the model archi-
tecture guarantees that the derivative functions do indeed 
come from differentiation of an underlying potential even 
if this potential is not explicitly modeled. The approach fol-
lowed here is more akin to multifield formulations in elastic-
ity or enhanced strain methods, for which additional degrees 
of freedom are added together with suitable constraints [65]. 
We implemented the DNN model in a UMAT subroutine for 
Abaqus, a popular finite element package in both academia 
and industry. The UMAT subroutine code was implemented 
with maximum flexibility in mind. The definition and all 
parameters of the neural network are provided to the UMAT 
through the input file. We showcased finite element simula-
tions with the neural network trained on the porcine data, 
from simple deformations to realistic applications such as 
tissue expansion.

Of course, this work is not without limitations. While 
it is common to model soft tissues within the hyperelastic 
framework, other physical phenomena will be included in 
future work, namely viscoelasticity, interstitial flow, and 
damage. Additionally, a Bayesian framework is needed to 
account for the inherent uncertainty in material behavior 
of biological materials. Nevertheless, we anticipate that 
the general framework introduced here will open up new 
avenues in data-driven finite element models that balance 
high-fidelity experimental data with expert knowledge of 
soft tissue mechanics.

5  Conclusion

The work presented in this study shows that neural network 
material models can reliably replace or augment conven-
tional constitutive material models in tissue mechanics 
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analyses. If enough high fidelity data are available, data-
driven models can eliminate the burden of choosing a spe-
cific functional form and the inherent limitations that come 
with this choice. However, in most applications, high fidelity 
data are scarce. Our work demonstrates that a multi-fidelity 
approach can leverage expert knowledge in the form of syn-
thetic data, while achieving a better fit to the experimental 
observations. A strong motivation to develop accurate mate-
rial models of soft tissue is to build predictive finite element 
models. We designed the neural network with this applica-
tion in mind, and implemented a DNN UMAT subroutine for 
Abaqus, a widely used finite element package.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00366- 022- 01733-3.
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