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Abstract
Atrioventricular heart valves, that is, the mitral valve and the
tricuspid valve, play vital roles in our cardiovascular system.
Disease of these valves is, therefore, a significant source of
morbidity and mortality. Unfortunately, current treatment op-
tions are suboptimal with significant rates of failure. It was only
recently that we have begun to appreciate that the atrioven-
tricular heart valve leaflets are not just passive flaps, but
actively (mal)adapting tissues. This discovery sheds new light
on disease mechanisms and provides, thus, possible path-
ways to new treatments. In this current opinion piece, we
examine the state of our knowledge about the (mal)adaptive
mechanisms (physiological and pathological growth and
remodeling) of the atrioventricular heart valves. Furthermore,
we review the evidence that suggests that valve maladaptation
may be a target for pharmacological treatment of diseased
valves which, in the future, could transform clinical practice.
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Background
The mitral valve and the tricuspid valve, collectively
referred to as the atrioventricular valves, separate the
left and right atria from their respective ventricles. They
function as check valves that ensure unidirectional
blood flow through the heart. During diastole, they open
to allow for ventricular filling. During systole, they close
under the transvalvular pressure gradient to prevent
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backflow or regurgitation of blood. These vital functions
depend on a well-orchestrated interplay between the
valves’ components, that is, the valve leaflets, the valve
annulus, the chordae tendineae, and the papillary
muscles, refer Figure 1a. In this role, their central
components, the valve leaflets, are exposed to hemo-
dynamic shear stresses, radial tensile forces at the
chordal insertion sites, circumferential tensile forces at
their annular insertion, biaxial stretch due to the
transvalvular pressure, and compressive forces in the
coaptation zone. This complex loading regime is cycli-

cally repeated with every heartbeat for billions of times
throughout our lifetime [1,2]. Ostensibly, these loading
modes determine the valves’ microstructure and
consequently their mechanical properties [3]. As a
result, the valve leaflets are complex laminate structures
with four distinguishable layers, the atrialis, the spon-
giosa, the fibrosa, and the ventricularis. Each layer shows
a distinct composition and organization of the structural
elements elastin, collagen, and glycosaminoglycans.
Grossly, elastin is diffusively distributed in the atrialis
and ventricularis. On the other hand, collagen is pri-

marily organized circumferentially throughout the
entire leaflet structure but is most dense and organized
in the fibrosa. However, in the atrialis hemodynamic
shear stresses can result in the deposition of more
radially oriented collagen. Finally, glycosaminoglycans
are most prominently found in the spongiosa [4].

Heart valve leaflets are not passive flaps but active tis-
sues. Valvular interstitial cells (VICs) are the primary
cell types that maintain a distinct extracellular matrix
organization. Although there is much to be understood

about VICs and their role in valve extracellular matrix
maintenance, they likely maintain a homeostatic equi-
librium through degradation and deposition of structural
proteins [5]. It appears that disruption of this mecha-
nobiological equilibrium elicits a phenotypical change in
VICs from a quiescent state to a synthetic state (also
called fibrotic state in the pathological setting) [6].
Subsequently, increased matrix turnover may result in
growth and remodeling [7]. The stimuli interrupting
the tissue’s equilibrium may be physiological or patho-
logical, leading to adaptive and maladaptive changes,

respectively [8]. Thus, VICs may play a central role in
both physiological growth and remodeling (e.g. during
pregnancy) and pathological growth and remodeling
(e.g. in response to cardiomyopathy) and thus could be
viable targets for pharmacological treatment.
www.sciencedirect.com
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Figure 1

(Mal)adaptation of atrioventricular heart valves. (a) Depiction of the left ventricle and the left atrioventricular heart valve (i) under normal conditions, (ii)
after pregnancy-induced, physiological remodeling, and (iii) after ischemic cardiomyopathy-induced, pathological remodeling. (b) Proposed mecha-
nisms of (mal)adaptation in the atrioventricular heart valve leaflet during ischemic cardiomyopathy (adapted from the study by [24]). (c) Simplified
renin–angiotensin and TGF-b systems illustrating their (inter)actions.
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Growth & remodeling in health
During pregnancy, an increased demand in oxygen to
support fetal development drives an increase in
maternal blood volume by up to 45% [9]. This volume
overload results in cardiovascular adaptation, refer
Figure 1a. Increases in both tricuspid valve and mitral
valve orifice area have been reported in patients [10,11].

For example, between the gestational ages 5 and 38
weeks, mitral valve orifice area in pregnant women in-
creases by approximately 12%. This increase in orifice
area correlates with an increase in leaflet size, likely as a
compensatory mechanism to maintain proper coaptation
and to prevent pregnancy-induced regurgitation. In fact,
in cows, mitral valve leaflets have been reported to grow
as much as 33% during gestation. Interestingly, this in-
crease in area is accompanied by an increase, or at least
maintenance, of thickness. The simultaneous increase
in area and maintenance of thickness implies that this

change is not (entirely) due to elastic deformation but
also due to the addition of mass, that is, growth. This
increase in mass is accompanied by an increase in total
collagen content. In addition, the microstructure of
mitral leaflets remodels during pregnancy. For example,
it has been reported that collagen fibers lose organiza-
tion in the leaflet bellies and increase their fiber crimp
length [12]. Not surprisingly, these morphological and
structural changes are accompanied by changes in me-
chanical properties [13]. Specifically, mitral valve leaflet
stiffness first decreases in early pregnancy before
www.sciencedirect.com
normalizing in late pregnancy. However, there appears to
be a disconnection between the monotonically
increasing leaflet size and thickness and the biphasic,

nonmonotonic changes in leaflet stiffness. This incon-
gruency may imply that factors other than leaflet
thickness, collagen content, and collagen organization
determine leaflet stiffness.

Although the teleologic reasons for mitral valve growth
and remodeling in pregnancy are clear, the actual stimuli
that elicit this response are not. One obvious contender
is increased leaflet tension after annular dilation. As the
heart is adapting to increased oxygen demands by ven-
tricular hypertrophy, dilation of the periannular tissue

increases the valves’ orifice areas. These geometric
changes alter the radius of curvature of the leaflets and,
through Laplace’s law, their leaflet tension. Presumably,
those alterations elicit the phenotypical changes in VICs
and promote tissue growth and remodeling. Alterna-
tively, or additionally, systemic changes in hormones
during pregnancy such as relaxin [14] may directly or
indirectly promote VIC activation and physiological
tissue growth and remodeling. As of today, there is little
evidence in favor of either hypothesis.
Growth & remodeling in disease
Valve leaflets respond not only to physiological stimuli as
in the case of pregnancy but also to pathological stimuli
in disease, refer Figure 1a. It was first observed that
Current Opinion in Biomedical Engineering 2020, 15:10–15
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patients with heart failure had stiffened leaflets that
appeared fibrotic upon histological analyses [15]. Spe-
cifically, leaflets from patients with heart failure had
remodeled to have more glycosaminoglycans, more
collagen, less water content, and were thicker. Those
compositional and structural changes also led to less
leaflet extensibility [16]. Subsequently, it was shown in
a longitudinal study design in sheep models of heart

failure and ischemic cardiomyopathy that mitral valve
leaflets may lengthen and increase in area within short
time periods (order of few weeks) [17,18]. Motivated by
these early reports on mitral valve growth and remod-
eling, Chaput et al [19] demonstrated in patients with
functional mitral regurgitation and dilated cardiomyop-
athy that mitral valve leaflets increase in size in both
patient populations. In addition, patients who demon-
strated signs of regurgitation had smaller leaflet area to
orifice area ratios (i.e. less leaflet to prevent backflow for
a given outflow opening) [19,20]. These data suggested

that (i) mitral valve leaflets in humans can grow in
response to disease, ostensibly, to prevent regurgitation
after annular dilation and (ii) regurgitation correlates
with insufficient leaflet area increase. Detailed studies
in pigs by the same group carefully delineated the po-
tential stimuli for mitral valve growth and remodeling.
Chaput et al [21] and Dal-Bianco et al [22,23] were able
to isolate the effects of mechanical stretch alone from
mechanical stretch plus ischemia and found that me-
chanical stretch alone (via papillary muscle
displacement-induced leaflet tethering), in the absence

of regurgitation or ischemia, resulted in leaflet growth
and thickening. Moreover, the addition of ischemia to
the same mechanical stimulus increased both leaflet
growth and thickening. In detailed studies, they
demonstrated that leaflet tethering induces trans-
forming growth factor (TGF)-bemediated endothelial-
to-mesenchymal transition, refer Figure 1b. Interest-
ingly, they also found that addition of ischemia not only
enhanced TGF-bemediated endothelial-to-mesen-
chymal transition and, thus, growth and remodeling but
also altered the underlying biological pathways. Specif-
ically, they found that in animals that underwent me-

chanical stretch (via tethering) plus ischemia leaflets
stained additionally for hematopoietic CD45, VCAM-1,
MMP-2/9, Ki67 and demonstrated signs of neovascula-
rization [24,25]. The latter changes are all indicative of
acute tissue remodeling and proliferation with possible
involvement of circulating bone marrowederived cells.
Thus, leaflet growth and remodeling may be enhanced
through infarct-mediated inflammatory cytokines. Most
recently, it was also demonstrated that alterations in
leaflet stress state via device implantation may similarly
induce growth and remodeling [26]. Specifically, im-

plantation of annuloplasty devices in pigs with ischemic
mitral regurgitation demonstrated elevated levels of
collagen expression associated with increased TGF-b.
Biological changes in these studies were accompanied
by increased leaflet stiffness.
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In summary, data from patients with heart failure, with
ischemic mitral regurgitation, and dilated cardiomyop-
athy, as well as several animal models of the same dis-
eases indicate that (i) mitral valve leaflets can actively
adapt to changes in their mechanobiological state
(owing to ventricular remodeling and annular dilation or
device implantation) toward preventing regurgitation,
(ii) regurgitation correlates with insufficient adaptation,

(iii) leaflets also thicken and stiffen which is counter-
productive to proper coaptation mechanics, and (iv)
TGF-b appears to be heavily involved in this adaptation
response.
Growth and remodeling as a
pharmaceutical target
Given the important role of atrioventricular heart valves
in cardiovascular physiology, their failure is associated
with significant morbidity and mortality. The primary
failure modes are due to excessive narrowing of the
valve’s orifice, that is, valve stenosis, or due to leakage of
the valve, that is, valve regurgitation. Although atrio-

ventricular valve stenosis is observed, atrioventricular
valve regurgitation is far more common. In fact, mitral
regurgitation is the most common valvular disease [27].
In contrast to the aortic valve, where open heart surgery
is being slowly but surely replaced with less-invasive,
transcatheter techniques [28], atrioventricular valve
regurgitation is primarily addressed surgically [29],
although transcatheter systems are under development
[30]. The most common approach to atrioventricular
heart valve repair is valve annuloplasty during which the
implantation of a prosthetic ring is meant to reshape the

valves’ annulus and to reestablish proper valve coapta-
tion [31]. Although an established technique, mitral and
tricuspid valve repair is notoriously suboptimal with up
to 30% of certain repairs failing within a few years of
surgery [32].

Atrioventricular heart valves can grow and remodel. In
health, this ability prevents valve insufficiency in preg-
nancy [10e12]. In disease, the leaflets’ growth and
thickening response is not clearly defined. On the one
hand, leaflet area increase is a potentially beneficial

response, whereas, on the other hand, fibrotic leaflet
thickening and stiffening are detrimental [19,21,24].
Thus, pharmacological regulation of both responses d
promotion of the former, suppression of the latter d
may open novel pathways for supporting surgical repair.

Likely target systems for pharmacological intervention
are the renineangiotensin system and the TGF-b
system and its receptors [33]. Importantly, both systems
interact as the main effector of the renineangiotensin
system, and angiotensin II activates TGF-b produc-
tion, refer Figure 1c. These systems play critical roles in

the pathogenesis of other types of cardiovascular dis-
eases, including coronary artery disease, aneurysms,
www.sciencedirect.com
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stroke, and cardiac fibrosis [34]. In those pathologies,
inhibition of the renineangiotensin system (and, indi-
rectly, of the TGF-b system) has been beneficial. Spe-
cifically, administration of angiotensin II receptor
antagonists (blockers)(ARBs), short ARBs, and angio-
tensin-converting enzyme inhibitors have been mostly
successful. Experience with treatment in those pathol-
ogies may inspire pharmacological strategies for treating

(mal)adaptation in the atrioventricular heart valves. For
example, Wylie-Sears et al [35] have recently explored
systemic administration of losartan (an ARB) in an
animal model of leaflet tethering plus ischemia. They
found that administration of losartan suppressed leaflet
thickening significantly, while allowing for leaflet area
increase. These changes correlated with downregulation
of all previously mentioned markers of tissue fibrosis and
reorganization: TGF-b, presence of CD45-positive cells,
VCAM-1, Ki67, and neovascularization. The authors
suggested that losartan decreases production of TGF-b,
its receptor, and angiotensin IIeinduced release of
latent TGF-b [35e37]. Thus, losartan appears to be
modifying the growth and remodeling response to dis-
ease in atrioventricular heart valves and may, therefore,
be a promising first step toward optimizing atrioven-
tricular heart valve treatment by pharmacological
means. Note, because losartan also lowers blood pres-
sure and affects myocardial remodeling after ischemia,
the authors modified their experimental approach to
correct for those confounding effects.
Future directions
Atrioventricular heart valve growth and remodeling is a
young research area with mostly early findings. Thus,
there remains much to be understood about growth and
remodeling in health and disease. In health, we are
lacking a fundamental understanding of the pathways

that initiate growth and remodeling. For example, we
have a limited understanding of the stimuli that initiate
growth and remodeling in pregnancy (i.e. hormonal
versus mechanical). Identification of the physiological
mechanisms of growth and remodeling may uncover
novel targets for pharmacological treatment in disease.
In the disease setting, one significant open question is,
of course, the translatability of basic scientific findings
to the clinical setting and identification of additional
targets and pharmacological agents. Specifically, as in
most other tissues, the role of the renineangiotensin
system and its interactions with the TGF-b system are
only incompletely understood. Future work on charac-
terizing these systems and the downstream effect of
their modulation will hopefully suggest additional stra-
tegies to control atrioventricular heart valve (mal)
adaptation. In conclusion, understanding growth and
remodeling of the atrioventricular heart valves is not just
of interest to basic science but also to clinical science.
Identification of pharmacological targets and agents that
www.sciencedirect.com
may support open heart surgery (or transcatheter ap-
proaches in the future) may improve currently poor
outcomes for a broad spectrum of patients.
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This article proposes and tests Losartan, an angiotensin II receptor
antagonist, as a possible pharmacological agent to modulate the (mal-)
adaptive response of the atrioventricular heart valves. Thus, it takes a
first step toward translating a basic scientific discovery about the (mal-)
adaptation of the atrioventricular heart valves into clinical practice.
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