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Abstract Biological soft tissues experience damage and
failure as a result of injury, disease, or simply age; exam-
ples include torn ligaments and arterial dissections. Given
the complexity of tissue geometry and material behavior,
computational models are often essential for studying both
damage and failure. Yet, because of the need to account for
discontinuous phenomena such as crazing, tearing, and rup-
turing, continuummethods are limited. Therefore, we model
soft tissue damage and failure using a particle/continuum
approach. Specifically, we combine continuum damage the-
ory with Smoothed Particle Hydrodynamics (SPH). Because
SPH is a meshless particle method, and particle connectivity
is determined solely through a neighbor list, discontinuities
can be readily modeled by modifying this list. We show,
for the first time, that an anisotropic hyperelastic constitu-
tive model commonly employed for modeling soft tissue can
be conveniently implemented within a SPH framework and
that SPH results show excellent agreement with analytical
solutions for uniaxial and biaxial extension as well as finite
element solutions for clamped uniaxial extension in 2D and
3D. We further develop a simple algorithm that automati-
cally detects damaged particles and disconnects the spatial
domain along rupture lines in 2D and rupture surfaces in 3D.
We demonstrate the utility of this approach by simulating
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damage and failure under clamped uniaxial extension and in
a peeling experiment of virtual soft tissue samples. In con-
clusion, SPH in combination with continuum damage theory
may provide an accurate and efficient framework for model-
ing damage and failure in soft tissues.
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1 Introduction

Biological soft tissues are remarkably durable under the
action of physiologic loads. Nevertheless, they are suscep-
tible to load-induced damage and ultimate failure; common
examples range from torn ligaments (Weiss and Gardiner
2001) to arterial dissections (Roccabianca et al. 2014). Given
the complexity of tissue geometry and material properties,
computational methods are often essential for studying tis-
sue damage and failure, yet traditional continuumapproaches
are limited in this regard.

In this paper, we explore a novel combination of con-
tinuum and discrete particle methods to model damage and
subsequent catastrophic failure in soft tissues that exhibit
nonlinear anisotropic behaviors under finite deformations.
Specifically, we meld a traditional continuum damage model
with a Smoothed Particle Hydrodynamics (SPH) model.
Although conceived for use in astrophysics, in the most
general sense, SPH is a meshfree Lagrangian method for
the numerical solution of differential equations of motion.
Rather than requiring mesh-based discretization of the spa-
tial domain, SPH relies on a list of particles over which
quantities of interests are smoothed. Since its introduction
by Gingold and Monaghan (1977) and Lucy (1977), SPH
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applications have ranged from the molecular level to galac-
tic scales. Herein, however, our interest is in its potential
advantages in the field of nonlinear solid mechanics, and in
particular soft tissue mechanics (Monaghan 1992; Liu and
Liu 2010; Springel 2010; Monaghan 2012). Among other
advantages, SPH can account for large deformations with-
out remeshing and, as we will see later, it can account for
macroscopic damage and gross failure (Benz and Asphaug
1995).

The first application of SPH in solid mechanics dates
back to Libersky and Petschek (1991). Yet, despite promis-
ing early results, applications in solid mechanics had until
recently been limited by at least three major shortcomings:
(i) In its original formulation, SPH particles tend to clus-
ter locally while allowing non-physical gaps elsewhere in
the domain. This poses a serious problem, especially for
applications in damage mechanics (Swegle et al. 1995; Dyka
et al. 1997; Monaghan 2000). (ii) An instability due to the
rank-deficiency of the method (similar to hourglass modes
in finite elements using reduced integration) can lead to
non-physical solutions (Belytschko et al. 2000; Rabczuk
et al. 2004). (iii) SPH does not provide first-order, or even
zeroth-order, completeness. Thus, in its non-normalized
form, gradients of constant and linear fields cannot be com-
puted exactly (Belytschko et al. 1998).

Fortunately, all three of these challenges have essentially
been overcome. Belytschko et al. (2000) traced SPH parti-
cle lumping back to its updated Lagrangian character, where
the list of neighboring particles is updated frequently based
on current particle coordinates. This problem is effectively
circumvented by using a “Total Lagrangian” SPH, in which
particle lists are established in the reference configuration and
not, or seldom, updated. SPH “hourglassing” has been over-
come by the introduction of “stress points” byDyka and Ingel
(1995) andRandles andLibersky (2000), and the recent intro-
duction of an hourglass control algorithm by Ganzenmüller
(2015). Finally, correct calculation of gradients of constant
and linear functions have been achieved through “normaliza-
tion” steps described below (Randles and Libersky 1996).

Consequently, only recently has SPH provided a reliable
framework for applications in solid mechanics. While there
are a few examples where SPH has been used to model the
behavior of soft tissues, limitations yet include the use of an
updated Lagrangian formulation, no normalization, restric-
tions to isotropic and/or linear elastic material behavior, or
use of a background mesh/grid (Hieber et al. 2003; Hieber
and Koumoutsakos 2008; Horton et al. 2010; Boyer et al.
2015). The purpose of this paper, therefore, is to review
key equations of the Normalized Total Lagrangian SPH
method as a representative meshless approach for modeling
soft tissue mechanics and to demonstrate its potential util-
ity in modeling damage and subsequent failure of a generic
anisotropic soft tissue subjected to finite deformations.

2 Normalized Total Lagrangian SPH

2.1 Mathematical framework

As noted earlier, Total Lagrangian SPH computes all quanti-
ties in the reference configuration, herein denoted by capital
letters to distinguish them from quantities in the current con-
figuration, which are denoted by lower case letters. Note, too,
that subscript indices do not imply summation; rather, they
denote collocation points commonly referred to as “parti-
cles”. Thus, X i is the location of particle “i” in the reference
configuration whereas xi is its coordinate location in the cur-
rent configuration.

In the SPH framework, physical quantities are interpo-
lated over a particle’s immediate neighborhood. To this end,
we assume that the function f (X), at point X i , can be approx-
imated by the convolution

ĝ(X i ) =
∫

f (X)W (X − X i )dX, (1)

where Ŵ is referred to as the kernel. If W takes the form
of the Dirac delta, ĝ(X i ) is exactly f (X i ). Yet, because
the Dirac delta has zero support, kernel functions with finite
support radius h, the smoothing length, are preferred. Well-
designed kernel functions nevertheless share the compact
support property and the unity property with the Dirac delta
and converge toward the Dirac delta for smoothing lengths
h → 0.

For example, the kernel used herein is the so-called Spiky
kernel, a third-order polynomial,

W (R j , h) = A

{
(h − R j )

3 R j < h

0 R j ≥ h
, (2)

where R j is the reference distance vector, R j = X j − X i ,
between particles i and j with the Euclidean length R j with
A = 10/(πh5) in two dimensions or A = 15/(πh6) in three
dimensions (Fig. 1).We chose the Spiky kernel because it has
been shown to prevent the clustering of neighboring particles
in close proximity due to vanishing repulsive forces seenwith
other popular kernels (Desbrun and Gascuel 1996). Regard-
less of the specific choice ofW , spatial discretization in SPH
is performed by approximating the integral expression in (1)
with a finite sum over discrete points, f j = f (X j ), that lie
in the neighborhood S of X i , hence

g(X i ) =
∑
j∈S

f j VjW (R j , h). (3)

X j are thus the referential coordinates of all the neighbors
of particle i at X i within the support of the kernel as defined
through the smoothing length h; Vj is the reference volume
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Left

Right

Fig. 1 “Spiky” SPH kernel. Right Illustration of the kernel’s weight
distribution. Left Projection of the kernel function onto the 2D plane
to illustrate the kernel’s radius of influence (in this case three times the
particle distance δ)

associated with each neighboring particle. The product of the
neighboring particle’s volume and its kernel weight may be
interpreted as a “shape function”.

The referential gradient of g(X) at particle i follows
accordingly,

∇Xg(X i ) =
∑
j∈S

f j Vj∇XW (R j , h), (4)

where gradients of the kernel functions are defined as

∇XW (R j , h) =
(

∂W (R j , h)

∂R j

)
R j

R j
. (5)

Equations (1)–(5) hold true for the vector field f (X) as well,
with the gradient becoming a second-order tensor,

∇X g(X i ) =
∑
j∈S

f j ⊗ Vj∇XW (R j , h). (6)

Albeit straightforward, this formulation cannot produce
correct gradients of constant or linear functions, which is
necessary for ensuring conservation of linear and angular
momentum, respectively (Bonet and Lok 1999; Bonet et al.
2004). To remove this deficiency, two ad-hoc corrections
have been introduced. First, Monaghan (1988) suggested a
simple but effective way, known as symmetrization, to com-
pute the correct gradient of constant fields. That is, let

∇Xg(X i ) =
∑
j∈S

(
f j − fi

)
Vj∇XW (R j , h). (7)

Alternatively, one can use Shepard functions (Bonet and Lok
1999). Second, Randles and Libersky (1996) suggested a
method to compute correct gradients of linear fields. Based
on the condition

∑
j∈S

R j ⊗ Vj ∇̃XW (R j , h) = I with

∇̃XW (R j , h) ≡ A−1
i ∇XW (R j , h), (8)

where the shape tensor A is

Ai =
∑
j∈S

Vj∇XW (R j , h) ⊗ R j , (9)

with R j = X j − X i , as noted above.

2.2 Mechanical implementation

To explicitly solve the equilibrium equations in referential
form,

DivP + ρ0b = ρ0 ẍ, (10)

where P is the first Piola–Kirchhoff stress tensor, b the
body force vector, ρ0 the referential mass density, and ẍ
the acceleration, we first compute the deformation gradient
Fi = ∂xi/∂X i associated with each particle i . Using the
definition of the Total Lagrangian SPH gradient and requi-
site normalizations, the deformation gradient follows as

Fi =
∑
j∈S

r j ⊗ Vj ∇̃XW (R j , h), (11)

where r j = x j − xi is the distance vector in the current
configuration corresponding to each R j .

In the following, we focus on hyperelastic materials in
which stress is derived from a strain energy functionW(C),
which, by material frame indifference, is a function of the
right Cauchy–Green tensor C = FTF. The stress tensor P
at X i can therefore be calculated according to (Humphrey
2013)

P i = 2Fi
∂W(C i )

∂C i
, (12)

using the relationship P = FS, where the second Piola–
Kirchhoff stress tensor S = 2∂W/∂C.

We express the local strong form of the equilibrium equa-
tion explicitly in terms of its external and internal forces,

mi ẍi = f inti + f exti , (13)

inwhich the internal forces emerge from the divergence of the
first Piola–Kirchhoff stress P as per the introduced approxi-
mations and normalizations shown in Bonet and Lok (1999)
and Ganzenmüller (2015),
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Algorithm 1 Normalized Total Lagrangian SPH Algorithm, adapted from (Ganzenmüller 2015)
1: for all times t do
2: for all particles i do
3: for all neighbors j ∈ S do
4: Fi ← Fi + r j ⊗ Vj∇XW (R j , h) 	 Compute uncorrected deformation gradient
5: Ai ← Ai + R j ⊗ Vj∇XW (R j , h) 	 Compute shape matrix
6: end for
7: Fi ← Fi A

−1
i 	 Correct deformation gradient

8: P i ← 2Fi∂W/∂C i 	 Compute first Piola–Kirchhoff stress tensor
9: P i ← P i A

−1
i 	 Correct stress tensor

10: end for
11: for all particles i do
12: for all neighbors j ∈ S do
13: f inti ← f inti + Vi Vj (P i + P j )∇XW (R j , h) 	 Compute internal particle forces
14: end for
15: end for
16: ẍi ← 1/mi f ti 	 Compute particle accelerations ( f ti = f inti + f exti + f hgi )
17: end for

f inti =
∑
j∈S

Vi Vj (P i ∇̃XW (R j , h) − P j ∇̃XW (Ri , h)).

(14)

Once the accelerations ẍi are updated at t + Δt as a
function of internal and external forces, we obtain par-
ticle locations xi through integration via the Leap Frog
scheme (Ganzenmüller 2015; Ganzenmüller et al. 2015).
Displacement boundary conditions can then be enforced by
overwriting the integrated particle displacements with their
respective boundary values. The total procedure is summa-
rized in Algorithm 1.

It is also worth mentioning that in contrast to the Finite
Element Method, where homogeneous traction boundary
conditions emerge naturally, this is not the case for the SPH
method. Thus, special considerations must be employed to
apply zero traction boundary conditions on free surfaces. In
the current work, we followedwhat seems to be standard pro-
cedure in the SPH literature (Randles andLibersky 2000).We
identified all free surface particles in the reference configura-
tion and calculated their surface normals. Subsequently, we
rotated the first Piola–Kirchhoff stress tensors at each time
step into a local system parallel to the surface normal and set
the necessary stress components of the tensor to zero before
rotating the modified tensors back into their global system.

2.3 Mechanical stabilization

As mentioned above, we suppress spurious zero-energy
modes using an hourglass control algorithm introduced by
Ganzenmüller (2015). To reduce effects of non-physical
motions of particles, the algorithm adds a penalty force to
the right hand side of Eq. (13), namely

f hgi =
∑
j∈S

−α
EVi VjW (R j , h)

2R2
j

(
δi + δ j

) r j
r j

, (15)

where E is the assigned hourglass stiffness and α is a control
parameter. δi and δ j estimate the error due to zero-energy
modes. For all examples considered below, we used α = 50
as recommended in Ganzenmüller (2015); for the hourglass
stiffness, we used the initial modulus of the hyperelastic
material. This approach was shown to yield quadratic con-
vergence in the problem studied; for more details, we refer
the reader to the original publication.

Rather than including an artificial viscosity term for sta-
bilizing the SPH solution, we introduce such dissipation
constitutively. Specifically, we model soft tissue as mildly
“viscohyperelastic” by adding a Newtonian viscous stress
tensor τ to the expression in (12),

P i = 2Fi
∂W(C i )

∂C i
+ Jτ i F

−T
i , (16)

with J = detF and τ i = 2μdi , where μ is the viscosity and
d is the stretching tensor. The latter is the symmetric part of
the velocity gradient l = ∂v/∂x = ḞF−1, which can be
written as

d = 1

2

(
l + lT

)
. (17)

The rate of change of the deformation gradient Ḟ can be
computed with a simple finite difference scheme,

Ḟ = 1

Δt

(
Ft+1 − Ft

)
. (18)

Finally, note that one of the more costly steps in Algo-
rithm 1 is a neighbor search for each particle. Here, the
Total Lagrangian approach provides an additional advan-
tage in that this search is performed only once. Similarly,
all other Lagrangian entities, such as reference distance vec-
tors, shapematrices, and particle weights (volume and kernel
value), can be typically calculated once at the beginning of
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the simulation. Exceptions include cases when very large
deformations require an update of the neighboring particles
or when a failure event disconnects particles, as we will see
later. Fortunately, the SPH method lends itself very well to
parallelization as the above equations are calculated for each
particle independently. Thus, the domain can be easily split
and distributed to multiple processors.

3 Damage and failure modeling of soft tissue

3.1 Material modeling of soft tissue

Soft tissues are complex composite materials which are
highly heterogeneous, anisotropic, typically residually stres-
sed and can exhibit viscoelastic characteristics (Rausch and
Kuhl 2013). For illustrative purposes, we assume the behav-
ior is dominated by nonlinear hyperelastic behavior (with
mild added viscosity), with one dominant fiber family, and
we ignore effects due to residual stress for the illustrative
problems of interest. To this end, we employ a Fung-type
constitutive relation defined through a strain energy func-
tion W(C, M) that depends on the right Cauchy–Green
tensor C as well as the referential fiber orientation vector
M (Holzapfel et al. 2000),

W(C, M) = μ0

2
(I1 − 3) − p(J − 1)

+ k1
4k2

[
exp

(
k2(I4 − 1)2

)
− 1

]
, (19)

where coordinate invariant quantities I1, J , and I4 are defined
as

I1 = C : I, J = detF, I4 = C : M ⊗ M. (20)

The isotropic ground substance is thus described by the neo-
Hookean strain energy having shear modulus μ0, while the
anisotropic fibrous extracellular matrix contributes to the
strain energy though an exponential relationship determined
by parameters k1 and k2. The remaining component of the
strain energy function in Eq. (19) enforces incompressibility
via the Lagrange multiplier p.

Note that the fibers only bear tensile load, thus the
fiber term stores energy only if I4 > 1. The second
Piola–Kirchhoff stress can then be calculated through the
Doyle–Ericksen relationship S = 2∂W/∂C,

S = μ0 I + k1(I4 − 1) exp
(
k2(I4 − 1)2

)
M ⊗ M

−pJ−1C−1. (21)

Unless otherwise stated, the following simulations are per-
formed under the assumption of plane stress. In this case, the

incompressiblity condition detF = 1 can be enforced ana-
lytically (Rausch and Kuhl 2014; Checa et al. 2015),

p = μ0

C11C22 − C12C21
. (22)

Once the second Piola–Kirchhoff stress is known, the first
Piola–Kirchhoff stress, as required for the present SPH for-
mulation, can be obtained through P = FS.

3.2 Damage modeling of soft tissue

To model damage and ultimately the failure behavior of
soft tissue, we propose a combined approach. We model
microstructural damage accumulated throughout the load
history of the soft tissue using a stretch-based continuum
damage approach (Lee et al. 2015), then use SPH to capture
macroscopic, discontinuous damage and ultimate failure. For
the first part, isotropic damage evolution, we employ a sim-
ple model based on an approach popularized by Simo (Simo
1987; Rausch and Humphrey 2015). Let the strain energy
function W0(C, M) be augmented by damage D ∈ [0, 1].
D accumulates as the material experiences maximum prin-
cipal stretch beyond a critical stretch level λcrit,

W(C, M, D) = (1 − D)W0(C, M), (23)

with D > 0 if λ > λcrit, whereW0 takes the form introduced
in Eq. (19). Following standard arguments of thermodynam-
ics, the second Piola–Kirchhoff stress is

S = 2(1 − D)
∂W0

∂C
, (24)

with the additional condition on the evolution of the damage
variable,

− ∂W
∂D

Ḋ ≥ 0. (25)

For the damage function D, we consider a simple, exponen-
tial evolution equation,

D =
{
exp

(
((λm − λcrit)/τ)2

) − 1 λm ≥ λcrit

0 λm < λcrit
. (26)

Thus, damage increases as the largest previously experi-
encedmaximum principal stretch λm(t) = maxs∈(−∞,t] λ(s)
exceeds the critical stretch λcrit at a rate determined through
τ . This process is by definition irreversible as indicated in
Eq. (25). Once λm exceeds λcrit , the virgin strain energy func-
tionW0 is modified through the reduction factor (1−D) and
from then on, the deformation path is altered permanently.
For λm = √

ln 2τ + λcrit the damage D equals one and the
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Fig. 2 A continuum damage model for soft tissue. a Sensitivity to the damage parameter λcrit that determines the stretch at which damage begins
to accumulate in the material. b Sensitivity to the damage parameter τ that determines the rate at which damage accumulates

material can no longer store strain energy and is, thus, fully
damaged. Figure 2a, b illustrate the sensitivity of the damage
model to the parameters λcrit and τ .

3.3 Failure modeling of soft tissue

As pointed out in the previous section, continuum damage
mechanics predicts complete material failure at a point when
the damage D has reached a value of one. Thereafter, the
model has no capacity to predict discontinuous failure behav-
iors such as crazing, delamination, or rupture. Yet, because
such behaviors are of most importance, they may render
effects of newly created surfaces critical. Noting that these
new surfaces may, in turn, be subjected to applied tractions,
the SPH method provides a natural way of introducing such
situations. Since the connection between particles is deter-
mined through the neighbor list established at the beginning
of the simulation, modifications to this list can, in a straight-
forward manner, create discontinuities. Thus, the only task
lies in determining which particles should be removed from
the list of neighbors.

Figure3 illustrates a simple algorithm based on what we
call the visual radius of the damaged particles. Say at time
t , before internal forces for the current particle i are deter-
mined through equations (11)–(22), we check whether any
of the neighboring particles have been completely damaged
(D = 1); if so, we add them to a second list of damaged
neighboring particles. Next, we send “visual rays” from the
current particle i to each undamaged neighboring particle. If
a ray intersects the visual radius of a damaged particle, we
remove the undamaged particle in the “shadow” of the dam-
aged particle from our list of neighbor particles (all particles
contained in the gray area in Fig. 3). For a good choice of the
visual radius, this approach generates impenetrable ruptures
in two dimensions and rupture surfaces in three dimensions.

Damaged Particle

Included Region

Excluded Region

Current Particle Neighbor Particle

Visual

Radius

Fig. 3 Discontinuous SPH damage & failure algorithm. All undam-
aged neighboring particles in the shadow of fully damaged particles are
excluded from the neighbor list (gray area). The damaged particles thus
create a rupture path (in 2D) or surface (in 3D) along which the domain
is disconnected

While this method becomes computationally more expen-
sive with a large number of damaged particles and long lists
of neighboring particles, the algorithm is never entered until
catastrophic failure is eminent. Thus, its cost is limited in
comparison to the total simulation time. Note, too, that once
a particle is fully damaged (i.e. D = 1), we remove it from
the simulation. Thus, mass of the damaged material is not
preserved per se, though overall mass is yet conserved (that

123



Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach

1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1

Stretch 

S
tr

es
s 

   
   

 [M
P

a]

BA
Analytical
SPH

Analytical
SPH

Stretch 

]a
P

M[
/

ssert
S

C

Stretch 

]
N[

ecro
F

noitcae
R

FEM
SPH (uniform)

1 1.1 1.2 1.3 1.4 1.5
0

1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

FEM
SPH (non-uniform)

]
N[

ecro
F

noitcae
R

Stretch 

D

5

10

15

Fig. 4 SPH predicts well the stress and reaction force under homoge-
nous deformation and under inhomogeneous deformation, respectively,
with an error of ∼1%. a Comparison of the uniaxial stress–stretch
response in the fiber direction (blue curve) and orthogonal to the fiber
direction (red curve) with the analytical solution. b Comparison of the
biaxial stress–stretch response with the analytical solution. c Compari-

son of the clamped uniaxial reaction force-stretch response with a finite
element solution (FEM) for a uniform SPH particle distribution and d
a non-uniform SPH particle distribution. The 20mm × 20mm tissue
sample was discretized with 441 particles and 400 quadrilateral finite
elements

of the remnant material plus that of the material that is lost).
This effect is otherwise negligible for sufficiently large num-
bers of particles.

4 Illustrative examples

4.1 Verification under uniaxial and biaxial extension

Toverify the implementation of Eqs. (11)–(22),we compared
stresses generated in response to uniaxial and biaxial exten-
sion of a 20mm × 20mm tissue strip predicted by the SPH
method and analytically (Fig. 4). Such loading protocols are
routinely employed to characterize the mechanical behavior
of soft tissues. To test the sensitivity of SPH to key para-
meters, such as particle density, smoothing length, and the
hourglass stiffness, we studied their effect on the maximum

error relative to the analytical solutions. To minimize inertial
effects, we chose a fifth-order polynomial loading curve with
a mean displacement speed of 10 mm/s.

As expected, accuracy of the SPH method increased with
increasing particle density. Interestingly, however, a smooth-
ing length h three to four times the characteristic particle
distance δ resulted in the smallest errors. Lastly, a hour-
glass stiffness equal to the initial stiffness of the material
provided a good compromise between suppressing zero-
energy modes and artificially increasing model stiffness.
Figure 4a, b shows results for both loading scenarios in
the fiber and orthogonal directions with material parame-
ters μ0 = 0.1MPa, k1 = 0.1MPa, k2 = 1.5 as well as a
characteristic particle distance δ = 1mm, smoothing length
h four times δ, an hourglass stiffness of 0.1MPa. As seen
in Fig. 4a, b, under simple deformations such as uniaxial
and biaxial extension, the SPH method, with the given para-
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A B C D E

Fig. 5 Clamped uniaxial extension of a soft tissue strip in 3D. a, b SPH
compares well with the finite element method (FEM) for clamped uni-
axial extension in 3D—note that we show both solutions separately for
SPH (particles) and FEM (exterior faces of the elements). c, d Errors
between SPH and FEM under clamped uniaxial extension are <1%
throughout most of the domain, but are as high as 5% at the domain
boundaries. e Comparison between SPH and FEM for clamped uni-

axial extension to failure of a soft tissue strip in 3D (because SPH
particles are removed upon failure, their corresponding finite elements
are depicted as transparent). In both SPH and FEM, tissue was modeled
as neo-Hookean with shear modulus of 0.1MPa and Lamé parameter
of 9MPa. The 20mm× 20mm× 4mm strip was discretized with 2205
SPH particles and 1600 linear hexahedral finite elements

meters, agrees well with the analytical solutions (maximum
error of 0.89%).

4.2 Validation under clamped uniaxial extension

To validate the SPH method, we compared reaction forces
for the clamped uniaxial extension of a 20mm × 20mm
tissue strip predicted by SPH and a finite element method
(FEM). This loading protocol is routinely employed dur-
ing damage and failure testing of anisotropic soft tissues
(Stemper et al. 2007) and will be repeated in subsequent
sections. In addition, this problem, in contrast to the verifica-
tion problems in the previous section, will test the accuracy
of SPH for inhomogeneous problems. All parameters and
properties for the SPH simulation are identical to the veri-
fication problems under uniaxial and biaxial extension. The
FEM simulation was performed on a 20mm× 20mm tissue
strip discretized with 400 quadrilateral shell finite elements.
We chose the same material model for the FEM simula-
tion as for the SPH simulation and incompressibility was
enforced through the penalty method in combination with
a three field solution strategy. Finally, the FEM simulations
were carried out in the open source finite element software
FEBio 2.3.1 (Maas et al. 2012). The results for the SPH
simulation and the FEM simulation are shown in Fig. 4c.
Agreement of the reaction force for the two methods demon-
strates the accuracy of SPH under a large, inhomogenous
deformation (maximum error 1.01%). Because SPH conver-

gence has previously been shown to deterioratewith irregular
particle spacing, the same comparison was also carried out
with non-uniformly spaced particles. While the error for the
non-uniform particle distribution increased to 1.12%, the
comparison resulted nonetheless in good agreement between
SPH and FEM, see Fig. 4d.

Lastly, we extended the validation experiment under
clamped uniaxial extension to the three dimensional case.
In this example, for both SPH and FEM, we chose a neo-
Hookean material model,

W(C) = μ0

2
(I1 − 3) − μ0lnJ + λ̂

2
(lnJ )2 , (27)

with a shear modulus μ0 of 0.1MPa and a Lamé parameter
λ̂ of 9MPa. I1 and J are invariants introduced in Eq. (20).
The FEMsolution to the clamped uniaxial extension problem
was, again, obtained using FEBio. Figure 5a, b shows, qual-
itatively, that an excellent agreement was obtained between
the two solutions. Quantitatively, errors are smaller than 1%
throughout most of the domain. Not surprisingly errors were
highest at the boundary (as high as 5%), likely due to SPH’s
non-local support and the lack of neighbors beyond the outer
surfaces, see Fig. 5c, d.

4.3 Failure under clamped uniaxial extension

Consider again a clamped uniaxial extension of a virtual soft
tissue sample having one of two different fiber directions:
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Fig. 6 Stress–stretch response to uniaxial extensionwith clamped ends
(i.e., non-homogenous deformation) predicted by the combined damage
and failure model. Damage begins to accumulate at a clamp-to-clamp
stretch of∼1.35, atwhich point the simulations begin to diverge as prob-
abilistic effects of the randomly distributed damage thresholds gain in

significance. a Fibers in the vertical direction. b Fibers in the diagonal
direction. All curves represent the mean of n = 10 samples and shaded
areas represent the range of solutions due to variations in critical stretch
values

vertical and diagonal. Using the same spatial and tempo-
ral descritization, loading curve, and SPH parameters as in
Sect. 3.1, we chose the visual radius of the discontinuous
damagemodel to be

√
2 times the particle distance. To further

mimic the natural variation in damage patterns, we assigned
each particle a λcrit according to a normal distribution with
a mean of 1.4 and standard deviation of 0.01; τ was set
to 0.3. The lowest viscosity that prevented instabilities was
chosen. Figure 6 shows the damage evolution of the virtual
tissue samples from the undeformed configuration to com-
plete failure. The curves demonstrate the seamless interplay
between the continuum damage model and the discontinu-
ous failure model. While the stress–stretch function follows
the characteristic response curve of soft tissues during the
initial loading, damage begins to accumulate at a clamp-to-
clamp stretch of ∼1.35, at which point the simulations begin
to diverge as probabilistic effects of the randomly distributed
damage thresholds gain in significance. Once the first parti-
cle fails, focal stretches quickly drive other particles to fail
leading to catastrophic failure soon thereafter.

Expectedly, the fiber orientation strongly determines the
failure behavior.Mostmarkedly, the vertical fiber distribution
results in the higher failure stress and higher failure stretch.
On the other hand, the diagonal fiber distribution results in
the lower failure stress and stretch. A time sequence with
stretch and damage distributions for vertical and diagonal
fiber orientation are further illustrated in Figs. 7 and 8.

We further validate our approach by repeating a simpli-
fied failure experiment under clamped uniaxial extension in
3D and comparing it to a finite element solution. For both
simulations, we used again a neo-Hookean material model
with a shear modulus μ0 of 0.1MPa and a Lamé parame-

ter λ̂ of 9MPa. For the SPH simulation, we further used a
particle density of 2205 within the 20mm× 20mm× 4mm
sample. However, in contrast to the 2D case, we virtually cut
the initial soft tissue sample by removing a set of particles on
the lateral side of the domain effectively predetermining the
subsequent failure path. In addition, we omitted the damage
softening effect in these simulations. We also built a finite
element model of the same soft tissue sample that included
cohesive elements between a lower and upper half of the
domain. The cohesive elements were modeled as nonlinear
springs between nodes of the cohesive interface, where the
spring constants were chosen very large before failure and
set to zero at the time of tissue failure. Subsequently, we cal-
ibrated the spring constants in the finite element simulation
to fail at the same times as particles in the SPH simulation. A
comparison of the dynamic response to these discrete failure
events are shown in Fig. 5e.

4.4 Virtual peeling experiment

Peeling experiments are performed, for example, to charac-
terize the delamination behavior of arterial wall tissue. In
our next example, we model these experiments on an ide-
alized tissue strip (Sommer et al. 2008; Tong et al. 2011).
Similar to simulations carried out previously (Gasser and
Holzapfel 2006), we consider a 4mm ×1.2mm tissue sam-
ple. Opposing Dirichlet boundary conditions were applied
to the particles of the left and right side of the top sur-
face, while all other boundaries remained traction free. In
the first time step, we also introduce a 1mm cut in the long-
axis direction as per the experiments performed by Sommer
et al. (2008). Material parameters and SPH-specific parame-
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Fig. 7 SPH time sequence for a
vertical fiber orientation in a soft
tissue strip under clamped
uniaxial extension to failure.
The 20mm × 20mm strip was
discretized with 441 SPH
particles

Fig. 8 SPH time sequence for a
diagonal fiber orientation in a
soft tissue strip under clamped
uniaxial extension to failure.
The 20mm × 20mm strip was
discretized with 441 SPH
particles

ters were chosen the same as in the example in Sect. 4.3,
except that we assigned each particle a λcrit according to a
normal distribution with a mean of 1.6 and standard devia-
tion of 0.05. Fibers are oriented in the direction of the long
axis.

Figure 9 shows the temporal progression of a represen-
tative experiment. The reference configuration is shown at
the bottom, while the last configuration before failure is
shown on top. The results are qualitatively similar to previous
simulations on the same geometry that employed the Parti-
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Fig. 9 Temporal evolution of tissue sample in virtual peeling experi-
ment using the SPH method. The tissue was modeled as solid mixture
of neo-Hookean ground substance with long-axis-wise-oriented Fung-
type fibers. The 4mm × 1.2mm strip was discretized with 480 SPH
particles

tion of Unity Finite Element Method (Gasser and Holzapfel
2006). Figure 10 shows the peeling force recorded as a func-
tion of the separation path averaged over ten tissue samples.
Upon initiation of separation, the force stays approximately
constant with intermediate spikes that are related to individ-
ual particles failing and the following rebound effect. The
average force curve shows good qualitative agreement with
experimental data (Sommer et al. 2008), which also show an
approximately constant peeling force throughout the exper-
iment though with intermediate spikes. It is noted that if the
tear is not initiated with an initial cut, as in the experiment,
there is a transient increase then decrease in the pulling force
toward the steady state value. This transient may occur due
to changes in tear depth during the initial phase of the exper-
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Fig. 10 Reaction force during a virtual peeling experiment. The tis-
sue sample was modeled as a solid mixture of neo-Hookean ground
substance with long-axis-wise-oriented Fung-type fibers. The 4mm ×
1.2mm strip was discretizedwith 480 SPH particles. Shown is themean
response (in black) for ten samples along with ±1 standard deviation
(in grey)

iment that essentially serves as a lever for the lateral pulling
force.

5 Discussion

The goal of the present work was to review the Normalized
Total Lagrangian SPH method and to explore its potential
for application in soft tissue mechanics. We found that the
method introduced in Sect. 2 lends itself well to the imple-
mentation of standard constitutive relations of finite strain
anisotropic elasticity and thus applies to soft tissuemodeling.
We demonstrated this capability using a Fung-type relation
frequently employed in soft tissue mechanics (Famaey et al.
2013; Genet et al. 2015) and that, for simple cases of uniaxial
and biaxial extension as well as clamped uniaxial extension,
the SPHmethod predicts elastic responses under large defor-
mations. To illustrate potential utility of the SPHmethod, we
implemented a combined continuum damage and discontin-
uous failure model that builds on the SPH’s natural ability to
creatematerial discontinuities. Applied tomodeling clamped
uniaxial extension and peeling of a generic soft tissue sample
to failure, we found that the Total Lagrangian SPH model
yields behaviors closely resembling experimental observa-
tions (Stemper et al. 2005; Sommer et al. 2008; Tong et al.
2011).

While the hourglass control algorithmwas recently shown
to stabilize SPH simulations and to improve accuracy when
compared to analytical solutions to simple deformations, this
was only for linearly elastic, isotropic materials. Here, we
found that the hourglass stiffness parameter must be cho-
sen strategically in nonlinear elasticity; there is a balance
between artificially increasing thematerial stiffness toomuch
and not suppressing the instability sufficiently. Especially
due to the nonlinear, anisotropic nature of soft tissues, the
effect of the hourglass algorithm varies with fiber orienta-
tion and degree of deformation. As can be seen from the
present results, however, it is possible to find parameter val-
ues that enable realistic simulations. Future developments
may provide an automatic adaptation algorithm for material
anisotropy and nonlinearity.

Lastly, we chose SPH as a well-known, well-documented
representation of meshless methods. SPH is not the only tool
of this type available. Other methods, such as Peridynamics
(Silling et al. 2007) and the Element-Free Galerkin Method
(Jin et al. 2014) as well as the closely related Meshless Total
Lagrangian Explicit Dynamics method (MTLED) (Miller
et al. 2012; Li et al. 2016), may provide a good alternative
to the method introduced in the current work. Note, too, that
methods such as the one discussed here as well as MTLED
lend themselves well to surgical simulations because of
straight-forward spatial discretization as well as their algo-
rithmic simplicity. Horton et al. (2010), for example, discuss
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the potential of meshless, Total Lagrangian explicit methods
for real-time simulations. Our method was implemented in
Matlab R2013b and no attempts were made toward optimiz-
ing this code in regard to efficiency or parallelization. As a
result, the per time step cost was approximately 0.3 s for the
problem in Fig. 7a on an Intel® Xeon® E5-2630 at 2.3GHz.
Implementation in a more efficient framework as well as par-
allelization and the utilization of graphics processing units
(GPUs) will show whether Total Lagrangian SPH has poten-
tial toward real-time simulations for problems defined on
large domains.

In conclusion, SPH previously suffered from a number
of challenges that limited its use in solid mechanics, but the
aforementioned recent advances by others have yielded new
promise. Via initial verifications and validations as well as
subsequent examples, we have demonstrated that the SPH
method should now be considered a more useful numeri-
cal tool in solid mechanics, and soft tissue mechanics in
particular. Especially where catastrophic failure such craz-
ing, dissection, and rupture is modeled, the natural way
of creating such discontinuities in SPH may provide some
advantages over more established mesh-dependent numer-
ical methods such as the finite element method. Further
development of the method is thus warranted.
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